
Photon Unity Networking 2
2.39

Generated by Doxygen 1.8.18

i

1 Main Page 1

1.1 Introduction . 1

1.2 Documentation And Learning . 1

1.3 First Steps . 2

2 General Documentation 3

2.1 Photon Unity Networking - First steps . 3

2.2 Photon . 3

2.2.1 Exit Games Cloud . 3

2.2.1.1 Subscriptions bought in Asset Store . 4

2.2.2 Photon Server SDK . 4

3 Network Simulation GUI 5

4 Network Statistics GUI 7

4.0.1 Usage . 7

4.0.2 Message Statistics . 7

4.0.2.1 Traffic Statistics . 7

4.0.2.2 Health Statistics . 7

4.0.3 Button "Reset" . 8

4.0.4 Button "To Log" . 8

4.0.5 Button "Stats On" (Enabling Traffic Stats) . 8

5 Public API Module 9

6 Module Documentation 11

6.1 Public API . 11

6.1.1 Detailed Description . 12

6.1.2 Enumeration Type Documentation . 12

6.1.2.1 ClientState . 12

6.1.2.2 PunLogLevel . 13

6.1.2.3 RpcTarget . 13

6.1.3 Function Documentation . 13

6.1.3.1 OnPhotonSerializeView() . 13

6.2 Optional Gui Elements . 15

6.2.1 Detailed Description . 15

6.3 Callbacks . 16

6.3.1 Detailed Description . 16

7 Namespace Documentation 17

7.1 Photon Namespace Reference . 17

7.2 Photon.Chat Namespace Reference . 17

7.2.1 Enumeration Type Documentation . 18

7.2.1.1 ChatDisconnectCause . 18

Generated by Doxygen

ii

7.2.1.2 ChatState . 19

7.2.1.3 CustomAuthenticationType . 19

7.3 Photon.Pun Namespace Reference . 20

7.3.1 Enumeration Type Documentation . 21

7.3.1.1 ConnectMethod . 21

7.3.1.2 OwnershipOption . 22

7.4 Photon.Pun.UtilityScripts Namespace Reference . 22

7.5 Photon.Realtime Namespace Reference . 24

7.5.1 Enumeration Type Documentation . 26

7.5.1.1 AuthModeOption . 26

7.5.1.2 ClientAppType . 26

7.5.1.3 CustomAuthenticationType . 27

7.5.1.4 DisconnectCause . 27

7.5.1.5 EncryptionMode . 28

7.5.1.6 EventCaching . 29

7.5.1.7 JoinMode . 29

7.5.1.8 LobbyType . 30

7.5.1.9 MatchmakingMode . 30

7.5.1.10 PropertyTypeFlag . 30

7.5.1.11 ReceiverGroup . 31

7.5.1.12 ServerConnection . 31

8 Class Documentation 33

8.1 ActorProperties Class Reference . 33

8.1.1 Detailed Description . 33

8.1.2 Member Data Documentation . 33

8.1.2.1 IsInactive . 33

8.1.2.2 PlayerName . 34

8.1.2.3 UserId . 34

8.2 AppSettings Class Reference . 34

8.2.1 Detailed Description . 35

8.2.2 Member Function Documentation . 35

8.2.2.1 IsAppId() . 35

8.2.2.2 ToStringFull() . 36

8.2.3 Member Data Documentation . 36

8.2.3.1 AppIdChat . 36

8.2.3.2 AppIdFusion . 36

8.2.3.3 AppIdRealtime . 36

8.2.3.4 AppIdVoice . 37

8.2.3.5 AppVersion . 37

8.2.3.6 AuthMode . 37

8.2.3.7 BestRegionSummaryFromStorage . 37

Generated by Doxygen

iii

8.2.3.8 EnableLobbyStatistics . 37

8.2.3.9 EnableProtocolFallback . 38

8.2.3.10 FixedRegion . 38

8.2.3.11 NetworkLogging . 38

8.2.3.12 Port . 38

8.2.3.13 Protocol . 38

8.2.3.14 ProxyServer . 38

8.2.3.15 Server . 39

8.2.3.16 UseNameServer . 39

8.2.4 Property Documentation . 39

8.2.4.1 IsBestRegion . 39

8.2.4.2 IsDefaultNameServer . 39

8.2.4.3 IsDefaultPort . 39

8.2.4.4 IsMasterServerAddress . 39

8.3 AuthenticationValues Class Reference . 40

8.3.1 Detailed Description . 40

8.3.2 Constructor & Destructor Documentation . 41

8.3.2.1 AuthenticationValues() [1/2] . 41

8.3.2.2 AuthenticationValues() [2/2] . 41

8.3.3 Member Function Documentation . 41

8.3.3.1 AddAuthParameter() . 41

8.3.3.2 CopyTo() . 42

8.3.3.3 SetAuthPostData() [1/3] . 42

8.3.3.4 SetAuthPostData() [2/3] . 42

8.3.3.5 SetAuthPostData() [3/3] . 43

8.3.3.6 ToString() . 43

8.3.4 Property Documentation . 43

8.3.4.1 AuthGetParameters . 43

8.3.4.2 AuthPostData . 43

8.3.4.3 AuthType . 44

8.3.4.4 Token . 44

8.3.4.5 UserId . 44

8.4 AuthenticationValues Class Reference . 44

8.4.1 Detailed Description . 45

8.4.2 Constructor & Destructor Documentation . 45

8.4.2.1 AuthenticationValues() [1/2] . 45

8.4.2.2 AuthenticationValues() [2/2] . 45

8.4.3 Member Function Documentation . 46

8.4.3.1 AddAuthParameter() . 46

8.4.3.2 CopyTo() . 46

8.4.3.3 SetAuthPostData() [1/3] . 46

8.4.3.4 SetAuthPostData() [2/3] . 47

Generated by Doxygen

iv

8.4.3.5 SetAuthPostData() [3/3] . 47

8.4.3.6 ToString() . 47

8.4.4 Property Documentation . 48

8.4.4.1 AuthGetParameters . 48

8.4.4.2 AuthPostData . 48

8.4.4.3 AuthType . 48

8.4.4.4 Token . 48

8.4.4.5 UserId . 48

8.5 ButtonInsideScrollList Class Reference . 49

8.5.1 Detailed Description . 49

8.6 ByteComparer Class Reference . 49

8.7 CellTree Class Reference . 49

8.7.1 Detailed Description . 49

8.7.2 Constructor & Destructor Documentation . 50

8.7.2.1 CellTree() [1/2] . 50

8.7.2.2 CellTree() [2/2] . 50

8.7.3 Property Documentation . 50

8.7.3.1 RootNode . 50

8.8 CellTreeNode Class Reference . 50

8.8.1 Detailed Description . 51

8.8.2 Constructor & Destructor Documentation . 51

8.8.2.1 CellTreeNode() [1/2] . 51

8.8.2.2 CellTreeNode() [2/2] . 51

8.8.3 Member Function Documentation . 52

8.8.3.1 AddChild() . 52

8.8.3.2 Draw() . 52

8.8.3.3 GetActiveCells() . 52

8.8.3.4 IsPointInsideCell() . 53

8.8.3.5 IsPointNearCell() . 53

8.8.4 Member Data Documentation . 53

8.8.4.1 Center . 53

8.8.4.2 Childs . 54

8.8.4.3 Id . 54

8.8.4.4 NodeType . 54

8.8.4.5 Parent . 54

8.9 ChannelCreationOptions Class Reference . 54

8.9.1 Member Data Documentation . 54

8.9.1.1 Default . 55

8.9.2 Property Documentation . 55

8.9.2.1 MaxSubscribers . 55

8.9.2.2 PublishSubscribers . 55

8.10 ChannelWellKnownProperties Class Reference . 55

Generated by Doxygen

v

8.11 ChatAppSettings Class Reference . 55

8.11.1 Detailed Description . 56

8.11.2 Member Data Documentation . 56

8.11.2.1 AppIdChat . 56

8.11.2.2 AppVersion . 57

8.11.2.3 EnableProtocolFallback . 57

8.11.2.4 FixedRegion . 57

8.11.2.5 NetworkLogging . 57

8.11.2.6 Port . 57

8.11.2.7 Protocol . 57

8.11.2.8 Server . 58

8.11.3 Property Documentation . 58

8.11.3.1 AppId . 58

8.11.3.2 IsDefaultNameServer . 58

8.12 ChatChannel Class Reference . 58

8.12.1 Detailed Description . 59

8.12.2 Constructor & Destructor Documentation . 59

8.12.2.1 ChatChannel() . 59

8.12.3 Member Function Documentation . 60

8.12.3.1 Add() [1/2] . 60

8.12.3.2 Add() [2/2] . 60

8.12.3.3 ClearMessages() . 60

8.12.3.4 ToStringMessages() . 60

8.12.3.5 TruncateMessages() . 61

8.12.4 Member Data Documentation . 61

8.12.4.1 ChannelID . 61

8.12.4.2 MessageLimit . 61

8.12.4.3 Messages . 61

8.12.4.4 Name . 61

8.12.4.5 Senders . 62

8.12.4.6 Subscribers . 62

8.12.5 Property Documentation . 62

8.12.5.1 IsPrivate . 62

8.12.5.2 LastMsgId . 62

8.12.5.3 MaxSubscribers . 62

8.12.5.4 MessageCount . 62

8.12.5.5 PublishSubscribers . 63

8.13 ChatClient Class Reference . 63

8.13.1 Detailed Description . 65

8.13.2 Constructor & Destructor Documentation . 65

8.13.2.1 ChatClient() . 65

8.13.3 Member Function Documentation . 66

Generated by Doxygen

vi

8.13.3.1 AddFriends() . 66

8.13.3.2 CanChatInChannel() . 66

8.13.3.3 Connect() . 67

8.13.3.4 ConnectAndSetStatus() . 67

8.13.3.5 Disconnect() . 68

8.13.3.6 GetPrivateChannelNameByUser() . 68

8.13.3.7 PublishMessage() . 68

8.13.3.8 RemoveFriends() . 69

8.13.3.9 SendAcksOnly() . 69

8.13.3.10 SendPrivateMessage() [1/2] . 70

8.13.3.11 SendPrivateMessage() [2/2] . 70

8.13.3.12 Service() . 70

8.13.3.13 SetOnlineStatus() [1/2] . 71

8.13.3.14 SetOnlineStatus() [2/2] . 71

8.13.3.15 StopThread() . 72

8.13.3.16 Subscribe() [1/4] . 72

8.13.3.17 Subscribe() [2/4] . 72

8.13.3.18 Subscribe() [3/4] . 73

8.13.3.19 Subscribe() [4/4] . 73

8.13.3.20 TryGetChannel() [1/2] . 74

8.13.3.21 TryGetChannel() [2/2] . 74

8.13.3.22 TryGetPrivateChannelByUser() . 74

8.13.3.23 Unsubscribe() . 75

8.13.4 Member Data Documentation . 75

8.13.4.1 chatPeer . 75

8.13.4.2 DefaultMaxSubscribers . 76

8.13.4.3 MessageLimit . 76

8.13.4.4 PrivateChannels . 76

8.13.4.5 PrivateChatHistoryLength . 76

8.13.4.6 PublicChannels . 76

8.13.5 Property Documentation . 76

8.13.5.1 AppId . 77

8.13.5.2 AppVersion . 77

8.13.5.3 AuthValues . 77

8.13.5.4 CanChat . 77

8.13.5.5 ChatRegion . 77

8.13.5.6 DebugOut . 77

8.13.5.7 DisconnectedCause . 78

8.13.5.8 EnableProtocolFallback . 78

8.13.5.9 FrontendAddress . 78

8.13.5.10 NameServerAddress . 78

8.13.5.11 SocketImplementationConfig . 78

Generated by Doxygen

vii

8.13.5.12 State . 79

8.13.5.13 TransportProtocol . 79

8.13.5.14 UseBackgroundWorkerForSending . 79

8.13.5.15 UserId . 79

8.14 ChatEventCode Class Reference . 79

8.14.1 Detailed Description . 80

8.14.2 Member Data Documentation . 80

8.14.2.1 ChatMessages . 80

8.14.2.2 ErrorInfo . 80

8.14.2.3 FriendsList . 81

8.14.2.4 PrivateMessage . 81

8.14.2.5 PropertiesChanged . 81

8.14.2.6 StatusUpdate . 81

8.14.2.7 Subscribe . 81

8.14.2.8 Unsubscribe . 81

8.14.2.9 Users . 82

8.14.2.10 UserSubscribed . 82

8.14.2.11 UserUnsubscribed . 82

8.15 ChatOperationCode Class Reference . 82

8.15.1 Detailed Description . 83

8.15.2 Member Data Documentation . 83

8.15.2.1 AddFriends . 83

8.15.2.2 Authenticate . 83

8.15.2.3 ChannelHistory . 83

8.15.2.4 Publish . 83

8.15.2.5 RemoveFriends . 83

8.15.2.6 SendPrivate . 84

8.15.2.7 SetProperties . 84

8.15.2.8 Subscribe . 84

8.15.2.9 Unsubscribe . 84

8.15.2.10 UpdateStatus . 84

8.16 ChatParameterCode Class Reference . 84

8.16.1 Detailed Description . 86

8.16.2 Member Data Documentation . 86

8.16.2.1 Broadcast . 86

8.16.2.2 Channel . 86

8.16.2.3 Channels . 86

8.16.2.4 ChannelSubscribers . 86

8.16.2.5 ChannelUserCount . 86

8.16.2.6 DebugData . 87

8.16.2.7 ExpectedValues . 87

8.16.2.8 Friends . 87

Generated by Doxygen

viii

8.16.2.9 HistoryLength . 87

8.16.2.10 Message . 87

8.16.2.11 Messages . 87

8.16.2.12 MsgId . 88

8.16.2.13 MsgIds . 88

8.16.2.14 Properties . 88

8.16.2.15 Secret . 88

8.16.2.16 Sender . 88

8.16.2.17 Senders . 88

8.16.2.18 SkipMessage . 89

8.16.2.19 Status . 89

8.16.2.20 SubscribeResults . 89

8.16.2.21 UniqueRoomId . 89

8.16.2.22 UserId . 89

8.16.2.23 UserProperties . 89

8.16.2.24 WebFlags . 90

8.17 ChatPeer Class Reference . 90

8.17.1 Detailed Description . 90

8.17.2 Constructor & Destructor Documentation . 90

8.17.2.1 ChatPeer() . 90

8.17.3 Member Function Documentation . 91

8.17.3.1 AuthenticateOnNameServer() . 91

8.17.3.2 Connect() . 91

8.17.4 Member Data Documentation . 91

8.17.4.1 NameServerHost . 91

8.17.4.2 NameServerPortOverride . 92

8.17.5 Property Documentation . 92

8.17.5.1 NameServerAddress . 92

8.18 ChatUserStatus Class Reference . 92

8.18.1 Detailed Description . 92

8.18.2 Member Data Documentation . 93

8.18.2.1 Away . 93

8.18.2.2 DND . 93

8.18.2.3 Invisible . 93

8.18.2.4 LFG . 93

8.18.2.5 Offline . 93

8.18.2.6 Online . 94

8.18.2.7 Playing . 94

8.19 ConnectAndJoinRandom Class Reference . 94

8.19.1 Detailed Description . 95

8.19.2 Member Function Documentation . 95

8.19.2.1 OnConnectedToMaster() . 95

Generated by Doxygen

ix

8.19.2.2 OnDisconnected() . 95

8.19.2.3 OnJoinedLobby() . 95

8.19.2.4 OnJoinedRoom() . 96

8.19.2.5 OnJoinRandomFailed() . 96

8.19.3 Member Data Documentation . 96

8.19.3.1 AutoConnect . 96

8.19.3.2 MaxPlayers . 97

8.19.3.3 Version . 97

8.20 ConnectionCallbacksContainer Class Reference . 97

8.20.1 Detailed Description . 97

8.20.2 Member Function Documentation . 97

8.20.2.1 OnConnected() . 98

8.20.2.2 OnConnectedToMaster() . 98

8.20.2.3 OnCustomAuthenticationFailed() . 98

8.20.2.4 OnCustomAuthenticationResponse() . 99

8.20.2.5 OnDisconnected() . 99

8.20.2.6 OnRegionListReceived() . 99

8.21 ConnectionHandler Class Reference . 100

8.21.1 Member Function Documentation . 100

8.21.1.1 RealtimeFallbackThread() . 100

8.21.2 Member Data Documentation . 101

8.21.2.1 ApplyDontDestroyOnLoad . 101

8.21.2.2 AppQuits . 101

8.21.2.3 DisconnectAfterKeepAlive . 101

8.21.2.4 KeepAliveInBackground . 101

8.21.3 Property Documentation . 101

8.21.3.1 Client . 102

8.21.3.2 CountSendAcksOnly . 102

8.21.3.3 FallbackThreadRunning . 102

8.22 CountdownTimer Class Reference . 102

8.22.1 Detailed Description . 103

8.22.2 Member Function Documentation . 103

8.22.2.1 CountdownTimerHasExpired() . 103

8.22.2.2 OnRoomPropertiesUpdate() . 103

8.22.3 Event Documentation . 104

8.22.3.1 OnCountdownTimerHasExpired . 104

8.23 CullArea Class Reference . 104

8.23.1 Detailed Description . 105

8.23.2 Member Function Documentation . 105

8.23.2.1 GetActiveCells() . 105

8.23.2.2 OnDrawGizmos() . 105

8.23.3 Member Data Documentation . 105

Generated by Doxygen

x

8.23.3.1 FIRST_GROUP_ID . 106

8.23.3.2 SUBDIVISION_FIRST_LEVEL_ORDER . 106

8.23.3.3 SUBDIVISION_SECOND_LEVEL_ORDER . 106

8.23.3.4 SUBDIVISION_THIRD_LEVEL_ORDER . 106

8.24 CullingHandler Class Reference . 107

8.24.1 Detailed Description . 107

8.24.2 Member Function Documentation . 107

8.24.2.1 OnPhotonSerializeView() . 107

8.25 DefaultPool Class Reference . 107

8.25.1 Detailed Description . 108

8.25.2 Member Function Documentation . 108

8.25.2.1 Destroy() . 108

8.25.2.2 Instantiate() . 108

8.25.3 Member Data Documentation . 109

8.25.3.1 ResourceCache . 109

8.26 EnterRoomParams Class Reference . 109

8.26.1 Detailed Description . 109

8.26.2 Member Data Documentation . 109

8.26.2.1 ExpectedUsers . 110

8.26.2.2 Lobby . 110

8.26.2.3 PlayerProperties . 110

8.26.2.4 RoomName . 110

8.26.2.5 RoomOptions . 110

8.27 ErrorCode Class Reference . 110

8.27.1 Detailed Description . 112

8.27.2 Member Data Documentation . 112

8.27.2.1 AuthenticationTicketExpired . 112

8.27.2.2 CustomAuthenticationFailed . 112

8.27.2.3 ExternalHttpCallFailed . 113

8.27.2.4 GameClosed . 113

8.27.2.5 GameDoesNotExist . 113

8.27.2.6 GameFull . 113

8.27.2.7 GameIdAlreadyExists . 113

8.27.2.8 HttpLimitReached . 113

8.27.2.9 InternalServerError . 114

8.27.2.10 InvalidAuthentication . 114

8.27.2.11 InvalidEncryptionParameters . 114

8.27.2.12 InvalidOperation . 114

8.27.2.13 InvalidOperationCode . 114

8.27.2.14 InvalidRegion . 115

8.27.2.15 JoinFailedFoundActiveJoiner . 115

8.27.2.16 JoinFailedFoundExcludedUserId . 115

Generated by Doxygen

xi

8.27.2.17 JoinFailedFoundInactiveJoiner . 115

8.27.2.18 JoinFailedPeerAlreadyJoined . 115

8.27.2.19 JoinFailedWithRejoinerNotFound . 116

8.27.2.20 MaxCcuReached . 116

8.27.2.21 NoRandomMatchFound . 116

8.27.2.22 Ok . 116

8.27.2.23 OperationLimitReached . 116

8.27.2.24 OperationNotAllowedInCurrentState . 117

8.27.2.25 PluginMismatch . 117

8.27.2.26 PluginReportedError . 117

8.27.2.27 ServerFull . 117

8.27.2.28 SlotError . 117

8.27.2.29 UserBlocked . 117

8.28 ErrorCode Class Reference . 118

8.28.1 Detailed Description . 118

8.28.2 Member Data Documentation . 119

8.28.2.1 AuthenticationTicketExpired . 119

8.28.2.2 CustomAuthenticationFailed . 119

8.28.2.3 GameClosed . 119

8.28.2.4 GameDoesNotExist . 119

8.28.2.5 GameFull . 119

8.28.2.6 GameIdAlreadyExists . 120

8.28.2.7 InternalServerError . 120

8.28.2.8 InvalidAuthentication . 120

8.28.2.9 InvalidOperationCode . 120

8.28.2.10 InvalidRegion . 120

8.28.2.11 MaxCcuReached . 121

8.28.2.12 NoRandomMatchFound . 121

8.28.2.13 Ok . 121

8.28.2.14 OperationNotAllowedInCurrentState . 121

8.28.2.15 ServerFull . 121

8.28.2.16 UserBlocked . 122

8.29 ErrorInfo Class Reference . 122

8.29.1 Detailed Description . 122

8.29.2 Member Data Documentation . 122

8.29.2.1 Info . 122

8.30 EventCode Class Reference . 123

8.30.1 Detailed Description . 123

8.30.2 Member Data Documentation . 123

8.30.2.1 AppStats . 124

8.30.2.2 AuthEvent . 124

8.30.2.3 AzureNodeInfo . 124

Generated by Doxygen

xii

8.30.2.4 CacheSliceChanged . 124

8.30.2.5 ErrorInfo . 124

8.30.2.6 GameList . 125

8.30.2.7 GameListUpdate . 125

8.30.2.8 Join . 125

8.30.2.9 Leave . 125

8.30.2.10 LobbyStats . 125

8.30.2.11 Match . 125

8.30.2.12 PropertiesChanged . 126

8.30.2.13 QueueState . 126

8.30.2.14 SetProperties . 126

8.31 EventSystemSpawner Class Reference . 126

8.31.1 Detailed Description . 126

8.32 Extensions Class Reference . 126

8.32.1 Detailed Description . 127

8.32.2 Member Function Documentation . 127

8.32.2.1 Contains() . 127

8.32.2.2 Merge() . 128

8.32.2.3 MergeStringKeys() . 128

8.32.2.4 StripKeysWithNullValues() [1/2] . 128

8.32.2.5 StripKeysWithNullValues() [2/2] . 129

8.32.2.6 StripToStringKeys() [1/2] . 129

8.32.2.7 StripToStringKeys() [2/2] . 129

8.32.2.8 ToStringFull() [1/2] . 130

8.32.2.9 ToStringFull() [2/2] . 130

8.32.2.10 ToStringFull< T >() . 131

8.33 FindFriendsOptions Class Reference . 131

8.33.1 Detailed Description . 131

8.33.2 Member Data Documentation . 131

8.33.2.1 CreatedOnGs . 131

8.33.2.2 Open . 132

8.33.2.3 Visible . 132

8.34 FriendInfo Class Reference . 132

8.34.1 Detailed Description . 132

8.35 GamePropertyKey Class Reference . 132

8.35.1 Detailed Description . 133

8.35.2 Member Data Documentation . 133

8.35.2.1 CleanupCacheOnLeave . 133

8.35.2.2 EmptyRoomTtl . 134

8.35.2.3 ExpectedUsers . 134

8.35.2.4 IsOpen . 134

8.35.2.5 IsVisible . 134

Generated by Doxygen

xiii

8.35.2.6 MasterClientId . 134

8.35.2.7 MaxPlayers . 134

8.35.2.8 PlayerCount . 135

8.35.2.9 PlayerTtl . 135

8.35.2.10 PropsListedInLobby . 135

8.35.2.11 Removed . 135

8.36 GraphicToggleIsOnTransition Class Reference . 135

8.36.1 Detailed Description . 136

8.37 IChatClientListener Interface Reference . 136

8.37.1 Detailed Description . 136

8.37.2 Member Function Documentation . 137

8.37.2.1 DebugReturn() . 137

8.37.2.2 OnChatStateChange() . 137

8.37.2.3 OnConnected() . 137

8.37.2.4 OnDisconnected() . 137

8.37.2.5 OnGetMessages() . 138

8.37.2.6 OnPrivateMessage() . 138

8.37.2.7 OnStatusUpdate() . 138

8.37.2.8 OnSubscribed() . 139

8.37.2.9 OnUnsubscribed() . 139

8.37.2.10 OnUserSubscribed() . 139

8.37.2.11 OnUserUnsubscribed() . 140

8.38 IConnectionCallbacks Interface Reference . 140

8.38.1 Detailed Description . 141

8.38.2 Member Function Documentation . 141

8.38.2.1 OnConnected() . 141

8.38.2.2 OnConnectedToMaster() . 141

8.38.2.3 OnCustomAuthenticationFailed() . 141

8.38.2.4 OnCustomAuthenticationResponse() . 142

8.38.2.5 OnDisconnected() . 142

8.38.2.6 OnRegionListReceived() . 142

8.39 IErrorInfoCallback Interface Reference . 143

8.39.1 Detailed Description . 143

8.39.2 Member Function Documentation . 143

8.39.2.1 OnErrorInfo() . 143

8.40 IInRoomCallbacks Interface Reference . 144

8.40.1 Detailed Description . 144

8.40.2 Member Function Documentation . 144

8.40.2.1 OnMasterClientSwitched() . 145

8.40.2.2 OnPlayerEnteredRoom() . 145

8.40.2.3 OnPlayerLeftRoom() . 145

8.40.2.4 OnPlayerPropertiesUpdate() . 145

Generated by Doxygen

xiv

8.40.2.5 OnRoomPropertiesUpdate() . 146

8.41 ILobbyCallbacks Interface Reference . 146

8.41.1 Detailed Description . 147

8.41.2 Member Function Documentation . 147

8.41.2.1 OnJoinedLobby() . 147

8.41.2.2 OnLeftLobby() . 147

8.41.2.3 OnLobbyStatisticsUpdate() . 147

8.41.2.4 OnRoomListUpdate() . 148

8.42 IMatchmakingCallbacks Interface Reference . 148

8.42.1 Detailed Description . 148

8.42.2 Member Function Documentation . 149

8.42.2.1 OnCreatedRoom() . 149

8.42.2.2 OnCreateRoomFailed() . 149

8.42.2.3 OnFriendListUpdate() . 149

8.42.2.4 OnJoinedRoom() . 150

8.42.2.5 OnJoinRandomFailed() . 150

8.42.2.6 OnJoinRoomFailed() . 151

8.42.2.7 OnLeftRoom() . 151

8.43 InstantiateParameters Struct Reference . 151

8.44 IOnEventCallback Interface Reference . 152

8.44.1 Detailed Description . 152

8.44.2 Member Function Documentation . 152

8.44.2.1 OnEvent() . 152

8.45 IOnPhotonViewControllerChange Interface Reference . 153

8.45.1 Detailed Description . 153

8.45.2 Member Function Documentation . 153

8.45.2.1 OnControllerChange() . 153

8.46 IOnPhotonViewOwnerChange Interface Reference . 153

8.46.1 Detailed Description . 154

8.46.2 Member Function Documentation . 154

8.46.2.1 OnOwnerChange() . 154

8.47 IOnPhotonViewPreNetDestroy Interface Reference . 154

8.47.1 Detailed Description . 154

8.47.2 Member Function Documentation . 154

8.47.2.1 OnPreNetDestroy() . 154

8.48 IPhotonViewCallback Interface Reference . 155

8.48.1 Detailed Description . 155

8.49 IPunInstantiateMagicCallback Interface Reference . 155

8.50 IPunObservable Interface Reference . 155

8.50.1 Detailed Description . 155

8.51 IPunOwnershipCallbacks Interface Reference . 155

8.51.1 Detailed Description . 156

Generated by Doxygen

xv

8.51.2 Member Function Documentation . 156

8.51.2.1 OnOwnershipRequest() . 156

8.51.2.2 OnOwnershipTransfered() . 156

8.51.2.3 OnOwnershipTransferFailed() . 157

8.52 IPunPrefabPool Interface Reference . 157

8.52.1 Detailed Description . 158

8.52.2 Member Function Documentation . 158

8.52.2.1 Destroy() . 158

8.52.2.2 Instantiate() . 158

8.53 IPunTurnManagerCallbacks Interface Reference . 159

8.53.1 Member Function Documentation . 159

8.53.1.1 OnPlayerFinished() . 159

8.53.1.2 OnPlayerMove() . 160

8.53.1.3 OnTurnBegins() . 160

8.53.1.4 OnTurnCompleted() . 160

8.53.1.5 OnTurnTimeEnds() . 160

8.54 IWebRpcCallback Interface Reference . 161

8.54.1 Detailed Description . 161

8.54.2 Member Function Documentation . 161

8.54.2.1 OnWebRpcResponse() . 161

8.55 LoadBalancingClient Class Reference . 162

8.55.1 Detailed Description . 166

8.55.2 Constructor & Destructor Documentation . 166

8.55.2.1 LoadBalancingClient() [1/2] . 166

8.55.2.2 LoadBalancingClient() [2/2] . 167

8.55.3 Member Function Documentation . 167

8.55.3.1 AddCallbackTarget() . 167

8.55.3.2 ChangeLocalID() . 167

8.55.3.3 ConnectToMasterServer() . 168

8.55.3.4 ConnectToNameServer() . 168

8.55.3.5 ConnectToRegionMaster() . 168

8.55.3.6 DebugReturn() . 169

8.55.3.7 Disconnect() . 169

8.55.3.8 OnEvent() . 169

8.55.3.9 OnMessage() . 169

8.55.3.10 OnOperationResponse() . 169

8.55.3.11 OnStatusChanged() . 170

8.55.3.12 OpChangeGroups() . 170

8.55.3.13 OpCreateRoom() . 170

8.55.3.14 OpFindFriends() . 171

8.55.3.15 OpGetGameList() . 172

8.55.3.16 OpJoinLobby() . 172

Generated by Doxygen

xvi

8.55.3.17 OpJoinOrCreateRoom() . 173

8.55.3.18 OpJoinRandomOrCreateRoom() . 174

8.55.3.19 OpJoinRandomRoom() . 174

8.55.3.20 OpJoinRoom() . 175

8.55.3.21 OpLeaveLobby() . 176

8.55.3.22 OpLeaveRoom() . 176

8.55.3.23 OpRaiseEvent() . 176

8.55.3.24 OpRejoinRoom() . 177

8.55.3.25 OpSetCustomPropertiesOfActor() . 177

8.55.3.26 OpSetCustomPropertiesOfRoom() . 178

8.55.3.27 OpWebRpc() . 179

8.55.3.28 ReconnectAndRejoin() . 180

8.55.3.29 ReconnectToMaster() . 180

8.55.3.30 RemoveCallbackTarget() . 180

8.55.3.31 Service() . 181

8.55.3.32 SimulateConnectionLoss() . 181

8.55.4 Member Data Documentation . 182

8.55.4.1 AuthMode . 182

8.55.4.2 ConnectionCallbackTargets . 182

8.55.4.3 EnableLobbyStatistics . 182

8.55.4.4 EncryptionMode . 182

8.55.4.5 MatchMakingCallbackTargets . 183

8.55.4.6 NameServerHost . 183

8.55.4.7 ProxyServerAddress . 183

8.55.4.8 RegionHandler . 183

8.55.4.9 ServerPortOverrides . 183

8.55.4.10 SummaryToCache . 184

8.55.5 Property Documentation . 184

8.55.5.1 AppId . 184

8.55.5.2 AppVersion . 184

8.55.5.3 AuthValues . 184

8.55.5.4 ClientType . 184

8.55.5.5 CloudRegion . 185

8.55.5.6 CurrentCluster . 185

8.55.5.7 CurrentLobby . 185

8.55.5.8 CurrentRoom . 185

8.55.5.9 CurrentServerAddress . 185

8.55.5.10 DisconnectedCause . 185

8.55.5.11 EnableProtocolFallback . 186

8.55.5.12 ExpectedProtocol . 186

8.55.5.13 GameServerAddress . 186

8.55.5.14 InLobby . 186

Generated by Doxygen

xvii

8.55.5.15 InRoom . 186

8.55.5.16 IsConnected . 187

8.55.5.17 IsConnectedAndReady . 187

8.55.5.18 IsFetchingFriendList . 187

8.55.5.19 IsUsingNameServer . 187

8.55.5.20 LoadBalancingPeer . 187

8.55.5.21 LocalPlayer . 188

8.55.5.22 MasterServerAddress . 188

8.55.5.23 NameServerAddress . 188

8.55.5.24 NickName . 188

8.55.5.25 PlayersInRoomsCount . 188

8.55.5.26 PlayersOnMasterCount . 188

8.55.5.27 RoomsCount . 189

8.55.5.28 SerializationProtocol . 189

8.55.5.29 Server . 189

8.55.5.30 State . 189

8.55.5.31 UseAlternativeUdpPorts . 189

8.55.5.32 UserId . 189

8.55.6 Event Documentation . 190

8.55.6.1 EventReceived . 190

8.55.6.2 OpResponseReceived . 190

8.55.6.3 StateChanged . 190

8.56 LoadBalancingPeer Class Reference . 190

8.56.1 Detailed Description . 192

8.56.2 Constructor & Destructor Documentation . 192

8.56.2.1 LoadBalancingPeer() [1/2] . 192

8.56.2.2 LoadBalancingPeer() [2/2] . 192

8.56.3 Member Function Documentation . 192

8.56.3.1 OpAuthenticate() . 193

8.56.3.2 OpAuthenticateOnce() . 193

8.56.3.3 OpChangeGroups() . 194

8.56.3.4 OpCreateRoom() . 194

8.56.3.5 OpFindFriends() . 195

8.56.3.6 OpGetGameList() . 195

8.56.3.7 OpJoinLobby() . 196

8.56.3.8 OpJoinRandomOrCreateRoom() . 196

8.56.3.9 OpJoinRandomRoom() . 196

8.56.3.10 OpJoinRoom() . 197

8.56.3.11 OpLeaveLobby() . 197

8.56.3.12 OpLeaveRoom() . 197

8.56.3.13 OpRaiseEvent() . 198

8.56.3.14 OpSettings() . 198

Generated by Doxygen

xviii

8.57 MatchMakingCallbacksContainer Class Reference . 198

8.57.1 Detailed Description . 199

8.57.2 Member Function Documentation . 199

8.57.2.1 OnCreatedRoom() . 199

8.57.2.2 OnCreateRoomFailed() . 200

8.57.2.3 OnFriendListUpdate() . 201

8.57.2.4 OnJoinedRoom() . 201

8.57.2.5 OnJoinRandomFailed() . 201

8.57.2.6 OnJoinRoomFailed() . 202

8.57.2.7 OnLeftRoom() . 202

8.58 MonoBehaviourPun Class Reference . 203

8.58.1 Detailed Description . 203

8.58.2 Property Documentation . 203

8.58.2.1 photonView . 203

8.59 MonoBehaviourPunCallbacks Class Reference . 203

8.59.1 Detailed Description . 205

8.59.2 Member Function Documentation . 205

8.59.2.1 OnConnected() . 205

8.59.2.2 OnConnectedToMaster() . 206

8.59.2.3 OnCreatedRoom() . 206

8.59.2.4 OnCreateRoomFailed() . 206

8.59.2.5 OnCustomAuthenticationFailed() . 207

8.59.2.6 OnCustomAuthenticationResponse() . 207

8.59.2.7 OnDisconnected() . 207

8.59.2.8 OnErrorInfo() . 208

8.59.2.9 OnFriendListUpdate() . 208

8.59.2.10 OnJoinedLobby() . 208

8.59.2.11 OnJoinedRoom() . 209

8.59.2.12 OnJoinRandomFailed() . 209

8.59.2.13 OnJoinRoomFailed() . 209

8.59.2.14 OnLeftLobby() . 210

8.59.2.15 OnLeftRoom() . 210

8.59.2.16 OnLobbyStatisticsUpdate() . 210

8.59.2.17 OnMasterClientSwitched() . 211

8.59.2.18 OnPlayerEnteredRoom() . 211

8.59.2.19 OnPlayerLeftRoom() . 211

8.59.2.20 OnPlayerPropertiesUpdate() . 211

8.59.2.21 OnRegionListReceived() . 212

8.59.2.22 OnRoomListUpdate() . 212

8.59.2.23 OnRoomPropertiesUpdate() . 212

8.59.2.24 OnWebRpcResponse() . 213

8.60 MoveByKeys Class Reference . 213

Generated by Doxygen

xix

8.60.1 Detailed Description . 214

8.61 NestedComponentUtilities Class Reference . 214

8.61.1 Member Function Documentation . 215

8.61.1.1 GetNestedComponentInParent< T, NestedT >() 215

8.61.1.2 GetNestedComponentInParents< T, NestedT >() 215

8.61.1.3 GetNestedComponentsInChildren< T >() . 216

8.61.1.4 GetNestedComponentsInChildren< T, NestedT >() 216

8.61.1.5 GetNestedComponentsInChildren< T, SearchT, NestedT >() 217

8.61.1.6 GetNestedComponentsInParents< T >() . 218

8.61.1.7 GetNestedComponentsInParents< T, NestedT >() 218

8.61.1.8 GetParentComponent< T >() . 219

8.62 OnClickDestroy Class Reference . 219

8.62.1 Detailed Description . 219

8.63 OnClickInstantiate Class Reference . 220

8.63.1 Detailed Description . 220

8.64 OnClickRpc Class Reference . 220

8.64.1 Detailed Description . 220

8.65 OnEscapeQuit Class Reference . 221

8.65.1 Detailed Description . 221

8.66 OnJoinedInstantiate Class Reference . 221

8.66.1 Detailed Description . 222

8.66.2 Member Function Documentation . 222

8.66.2.1 DespawnObjects() . 222

8.66.2.2 GetRandomOffset() . 223

8.66.2.3 GetSpawnPoint() [1/2] . 223

8.66.2.4 GetSpawnPoint() [2/2] . 223

8.66.2.5 OnCreatedRoom() . 223

8.66.2.6 OnCreateRoomFailed() . 224

8.66.2.7 OnFriendListUpdate() . 224

8.66.2.8 OnJoinedRoom() . 224

8.66.2.9 OnJoinRandomFailed() . 225

8.66.2.10 OnJoinRoomFailed() . 225

8.66.2.11 OnLeftRoom() . 226

8.67 OnPointerOverTooltip Class Reference . 226

8.67.1 Detailed Description . 226

8.68 OnStartDelete Class Reference . 226

8.68.1 Detailed Description . 226

8.69 OperationCode Class Reference . 226

8.69.1 Detailed Description . 227

8.69.2 Member Data Documentation . 228

8.69.2.1 Authenticate . 228

8.69.2.2 AuthenticateOnce . 228

Generated by Doxygen

xx

8.69.2.3 ChangeGroups . 228

8.69.2.4 CreateGame . 228

8.69.2.5 FindFriends . 228

8.69.2.6 GetGameList . 229

8.69.2.7 GetLobbyStats . 229

8.69.2.8 GetProperties . 229

8.69.2.9 GetRegions . 229

8.69.2.10 Join . 229

8.69.2.11 JoinGame . 229

8.69.2.12 JoinLobby . 230

8.69.2.13 JoinRandomGame . 230

8.69.2.14 Leave . 230

8.69.2.15 LeaveLobby . 230

8.69.2.16 RaiseEvent . 230

8.69.2.17 ServerSettings . 230

8.69.2.18 SetProperties . 231

8.69.2.19 WebRpc . 231

8.70 OpJoinRandomRoomParams Class Reference . 231

8.70.1 Detailed Description . 231

8.70.2 Member Data Documentation . 231

8.70.2.1 ExpectedCustomRoomProperties . 232

8.70.2.2 ExpectedMaxPlayers . 232

8.70.2.3 ExpectedUsers . 232

8.70.2.4 MatchingType . 232

8.70.2.5 SqlLobbyFilter . 232

8.70.2.6 TypedLobby . 232

8.71 ParameterCode Class Reference . 233

8.71.1 Detailed Description . 233

8.71.2 Member Data Documentation . 233

8.71.2.1 Address . 233

8.71.2.2 ApplicationId . 234

8.71.2.3 AppVersion . 234

8.71.2.4 ClientAuthenticationData . 234

8.71.2.5 ClientAuthenticationParams . 234

8.71.2.6 ClientAuthenticationType . 234

8.71.2.7 Region . 234

8.71.2.8 Secret . 235

8.71.2.9 UserId . 235

8.72 ParameterCode Class Reference . 235

8.72.1 Detailed Description . 238

8.72.2 Member Data Documentation . 238

8.72.2.1 ActorList . 238

Generated by Doxygen

xxi

8.72.2.2 ActorNr . 238

8.72.2.3 Add . 239

8.72.2.4 Address . 239

8.72.2.5 ApplicationId . 239

8.72.2.6 AppVersion . 239

8.72.2.7 AzureLocalNodeId . 239

8.72.2.8 AzureMasterNodeId . 239

8.72.2.9 AzureNodeInfo . 240

8.72.2.10 Broadcast . 240

8.72.2.11 Cache . 240

8.72.2.12 CacheSliceIndex . 240

8.72.2.13 CheckUserOnJoin . 240

8.72.2.14 CleanupCacheOnLeave . 240

8.72.2.15 ClientAuthenticationData . 241

8.72.2.16 ClientAuthenticationParams . 241

8.72.2.17 ClientAuthenticationType . 241

8.72.2.18 Cluster . 241

8.72.2.19 Code . 241

8.72.2.20 CustomEventContent . 241

8.72.2.21 CustomInitData . 242

8.72.2.22 Data . 242

8.72.2.23 EmptyRoomTTL . 242

8.72.2.24 EncryptionData . 242

8.72.2.25 EncryptionMode . 242

8.72.2.26 EventForward . 242

8.72.2.27 ExpectedProtocol . 243

8.72.2.28 ExpectedValues . 243

8.72.2.29 FindFriendsOptions . 243

8.72.2.30 FindFriendsRequestList . 243

8.72.2.31 FindFriendsResponseOnlineList . 243

8.72.2.32 FindFriendsResponseRoomIdList . 243

8.72.2.33 GameCount . 244

8.72.2.34 GameList . 244

8.72.2.35 GameProperties . 244

8.72.2.36 Group . 244

8.72.2.37 Info . 244

8.72.2.38 IsComingBack . 244

8.72.2.39 IsInactive . 245

8.72.2.40 JoinMode . 245

8.72.2.41 LobbyName . 245

8.72.2.42 LobbyStats . 245

8.72.2.43 LobbyType . 245

Generated by Doxygen

xxii

8.72.2.44 MasterClientId . 246

8.72.2.45 MasterPeerCount . 246

8.72.2.46 MatchMakingType . 246

8.72.2.47 NickName . 246

8.72.2.48 PeerCount . 246

8.72.2.49 PlayerProperties . 246

8.72.2.50 PlayerTTL . 247

8.72.2.51 PluginName . 247

8.72.2.52 Plugins . 247

8.72.2.53 PluginVersion . 247

8.72.2.54 Position . 247

8.72.2.55 Properties . 247

8.72.2.56 PublishUserId . 248

8.72.2.57 ReceiverGroup . 248

8.72.2.58 Region . 248

8.72.2.59 Remove . 248

8.72.2.60 RoomName . 248

8.72.2.61 RoomOptionFlags . 248

8.72.2.62 SuppressRoomEvents . 249

8.72.2.63 TargetActorNr . 249

8.72.2.64 Token . 249

8.72.2.65 UriPath . 249

8.72.2.66 UserId . 249

8.72.2.67 WebRpcParameters . 249

8.72.2.68 WebRpcReturnCode . 250

8.72.2.69 WebRpcReturnMessage . 250

8.73 PhotonAnimatorView Class Reference . 250

8.73.1 Detailed Description . 251

8.73.2 Member Function Documentation . 251

8.73.2.1 CacheDiscreteTriggers() . 251

8.73.2.2 DoesLayerSynchronizeTypeExist() . 251

8.73.2.3 DoesParameterSynchronizeTypeExist() . 251

8.73.2.4 GetLayerSynchronizeType() . 252

8.73.2.5 GetParameterSynchronizeType() . 252

8.73.2.6 GetSynchronizedLayers() . 252

8.73.2.7 GetSynchronizedParameters() . 253

8.73.2.8 OnPhotonSerializeView() . 253

8.73.2.9 SetLayerSynchronized() . 253

8.73.2.10 SetParameterSynchronized() . 254

8.74 PhotonAppSettings Class Reference . 254

8.74.1 Detailed Description . 254

8.74.2 Property Documentation . 255

Generated by Doxygen

xxiii

8.74.2.1 Instance . 255

8.75 PhotonHandler Class Reference . 255

8.75.1 Detailed Description . 256

8.75.2 Member Function Documentation . 256

8.75.2.1 Dispatch() . 256

8.75.2.2 FixedUpdate() . 256

8.75.2.3 LateUpdate() . 257

8.75.2.4 OnCreatedRoom() . 257

8.75.2.5 OnCreateRoomFailed() . 257

8.75.2.6 OnJoinedRoom() . 258

8.75.2.7 OnJoinRandomFailed() . 258

8.75.2.8 OnJoinRoomFailed() . 258

8.75.2.9 OnLeftRoom() . 259

8.75.2.10 OnMasterClientSwitched() . 259

8.75.2.11 OnPlayerEnteredRoom() . 259

8.75.2.12 OnPlayerLeftRoom() . 260

8.75.2.13 OnPlayerPropertiesUpdate() . 260

8.75.2.14 OnRoomPropertiesUpdate() . 260

8.75.3 Member Data Documentation . 261

8.75.3.1 MaxDatagrams . 261

8.75.3.2 SendAsap . 261

8.76 PhotonLagSimulationGui Class Reference . 261

8.76.1 Detailed Description . 262

8.76.2 Member Data Documentation . 262

8.76.2.1 Visible . 262

8.76.2.2 WindowId . 262

8.76.2.3 WindowRect . 262

8.76.3 Property Documentation . 262

8.76.3.1 Peer . 262

8.77 PhotonMessageInfo Struct Reference . 263

8.77.1 Detailed Description . 263

8.77.2 Member Data Documentation . 263

8.77.2.1 Sender . 263

8.78 PhotonNetwork Class Reference . 263

8.78.1 Detailed Description . 269

8.78.2 Member Function Documentation . 270

8.78.2.1 AddCallbackTarget() . 270

8.78.2.2 AllocateRoomViewID() . 270

8.78.2.3 AllocateViewID() [1/3] . 270

8.78.2.4 AllocateViewID() [2/3] . 271

8.78.2.5 AllocateViewID() [3/3] . 271

8.78.2.6 CloseConnection() . 271

Generated by Doxygen

xxiv

8.78.2.7 ConnectToBestCloudServer() . 272

8.78.2.8 ConnectToMaster() . 272

8.78.2.9 ConnectToRegion() . 273

8.78.2.10 ConnectUsingSettings() . 273

8.78.2.11 CreateRoom() . 274

8.78.2.12 Destroy() [1/2] . 274

8.78.2.13 Destroy() [2/2] . 275

8.78.2.14 DestroyAll() . 276

8.78.2.15 DestroyPlayerObjects() [1/3] . 276

8.78.2.16 DestroyPlayerObjects() [2/3] . 276

8.78.2.17 DestroyPlayerObjects() [3/3] . 277

8.78.2.18 Disconnect() . 277

8.78.2.19 FetchServerTimestamp() . 277

8.78.2.20 FindFriends() . 277

8.78.2.21 FindGameObjectsWithComponent() . 278

8.78.2.22 GetCustomRoomList() . 278

8.78.2.23 GetPing() . 279

8.78.2.24 JoinLobby() [1/2] . 279

8.78.2.25 JoinLobby() [2/2] . 280

8.78.2.26 JoinOrCreateRoom() . 280

8.78.2.27 JoinRandomOrCreateRoom() . 281

8.78.2.28 JoinRandomRoom() [1/3] . 282

8.78.2.29 JoinRandomRoom() [2/3] . 282

8.78.2.30 JoinRandomRoom() [3/3] . 283

8.78.2.31 JoinRoom() . 284

8.78.2.32 LeaveLobby() . 284

8.78.2.33 LeaveRoom() . 285

8.78.2.34 LoadLevel() [1/2] . 285

8.78.2.35 LoadLevel() [2/2] . 286

8.78.2.36 NetworkStatisticsReset() . 286

8.78.2.37 NetworkStatisticsToString() . 286

8.78.2.38 OpCleanActorRpcBuffer() . 287

8.78.2.39 OpCleanRpcBuffer() . 287

8.78.2.40 OpRemoveCompleteCacheOfPlayer() . 287

8.78.2.41 RaiseEvent() . 287

8.78.2.42 Reconnect() . 288

8.78.2.43 ReconnectAndRejoin() . 288

8.78.2.44 RejoinRoom() . 289

8.78.2.45 RemoveBufferedRPCs() . 289

8.78.2.46 RemoveCallbackTarget() . 289

8.78.2.47 RemovePlayerCustomProperties() . 290

8.78.2.48 RemoveRPCs() [1/2] . 290

Generated by Doxygen

xxv

8.78.2.49 RemoveRPCs() [2/2] . 291

8.78.2.50 RemoveRPCsInGroup() . 291

8.78.2.51 SendAllOutgoingCommands() . 292

8.78.2.52 SetInterestGroups() [1/2] . 292

8.78.2.53 SetInterestGroups() [2/2] . 292

8.78.2.54 SetLevelPrefix() . 293

8.78.2.55 SetMasterClient() . 293

8.78.2.56 SetPlayerCustomProperties() . 294

8.78.2.57 SetSendingEnabled() [1/2] . 294

8.78.2.58 SetSendingEnabled() [2/2] . 295

8.78.2.59 WebRpc() . 295

8.78.3 Member Data Documentation . 296

8.78.3.1 ConnectMethod . 296

8.78.3.2 EnableCloseConnection . 296

8.78.3.3 LogLevel . 296

8.78.3.4 MAX_VIEW_IDS . 297

8.78.3.5 MinimalTimeScaleToDispatchInFixedUpdate . 297

8.78.3.6 NetworkingClient . 297

8.78.3.7 ObjectsInOneUpdate . 297

8.78.3.8 PrecisionForFloatSynchronization . 297

8.78.3.9 PrecisionForQuaternionSynchronization . 298

8.78.3.10 PrecisionForVectorSynchronization . 298

8.78.3.11 PunVersion . 298

8.78.3.12 RunRpcCoroutines . 298

8.78.3.13 ServerSettingsFileName . 298

8.78.3.14 UseRpcMonoBehaviourCache . 299

8.78.4 Property Documentation . 299

8.78.4.1 AppVersion . 299

8.78.4.2 AuthValues . 299

8.78.4.3 AutomaticallySyncScene . 299

8.78.4.4 BestRegionSummaryInPreferences . 300

8.78.4.5 CloudRegion . 300

8.78.4.6 CountOfPlayers . 300

8.78.4.7 CountOfPlayersInRooms . 300

8.78.4.8 CountOfPlayersOnMaster . 300

8.78.4.9 CountOfRooms . 300

8.78.4.10 CrcCheckEnabled . 301

8.78.4.11 CurrentCluster . 301

8.78.4.12 CurrentLobby . 301

8.78.4.13 CurrentRoom . 301

8.78.4.14 EnableLobbyStatistics . 301

8.78.4.15 GameVersion . 302

Generated by Doxygen

xxvi

8.78.4.16 InLobby . 302

8.78.4.17 InRoom . 302

8.78.4.18 IsConnected . 302

8.78.4.19 IsConnectedAndReady . 303

8.78.4.20 IsMasterClient . 303

8.78.4.21 IsMessageQueueRunning . 303

8.78.4.22 KeepAliveInBackground . 303

8.78.4.23 LevelLoadingProgress . 304

8.78.4.24 LocalPlayer . 304

8.78.4.25 MasterClient . 304

8.78.4.26 MaxResendsBeforeDisconnect . 304

8.78.4.27 NetworkClientState . 305

8.78.4.28 NetworkStatisticsEnabled . 305

8.78.4.29 NickName . 305

8.78.4.30 OfflineMode . 305

8.78.4.31 PacketLossByCrcCheck . 305

8.78.4.32 PhotonServerSettings . 306

8.78.4.33 PhotonViewCollection . 306

8.78.4.34 PhotonViews . 306

8.78.4.35 PlayerList . 306

8.78.4.36 PlayerListOthers . 306

8.78.4.37 PrefabPool . 307

8.78.4.38 QuickResends . 307

8.78.4.39 ResentReliableCommands . 307

8.78.4.40 SendRate . 307

8.78.4.41 SerializationRate . 308

8.78.4.42 Server . 308

8.78.4.43 ServerAddress . 308

8.78.4.44 ServerPortOverrides . 308

8.78.4.45 ServerTimestamp . 308

8.78.4.46 Time . 309

8.78.4.47 UseAlternativeUdpPorts . 309

8.79 PhotonPing Class Reference . 309

8.79.1 Detailed Description . 309

8.80 PhotonPortDefinition Struct Reference . 310

8.80.1 Detailed Description . 310

8.80.2 Member Data Documentation . 310

8.80.2.1 GameServerPort . 310

8.80.2.2 MasterServerPort . 310

8.80.2.3 NameServerPort . 310

8.81 PhotonRigidbody2DView Class Reference . 311

8.81.1 Member Function Documentation . 311

Generated by Doxygen

xxvii

8.81.1.1 OnPhotonSerializeView() . 311

8.82 PhotonRigidbodyView Class Reference . 312

8.82.1 Member Function Documentation . 312

8.82.1.1 OnPhotonSerializeView() . 312

8.83 PhotonStatsGui Class Reference . 313

8.83.1 Detailed Description . 313

8.83.2 Member Function Documentation . 313

8.83.2.1 Update() . 313

8.83.3 Member Data Documentation . 314

8.83.3.1 buttonsOn . 314

8.83.3.2 healthStatsVisible . 314

8.83.3.3 statsOn . 314

8.83.3.4 statsRect . 314

8.83.3.5 statsWindowOn . 314

8.83.3.6 trafficStatsOn . 315

8.83.3.7 WindowId . 315

8.84 PhotonStream Class Reference . 315

8.84.1 Detailed Description . 316

8.84.2 Constructor & Destructor Documentation . 316

8.84.2.1 PhotonStream() . 316

8.84.3 Member Function Documentation . 316

8.84.3.1 PeekNext() . 316

8.84.3.2 ReceiveNext() . 317

8.84.3.3 SendNext() . 317

8.84.3.4 Serialize() [1/10] . 317

8.84.3.5 Serialize() [2/10] . 317

8.84.3.6 Serialize() [3/10] . 317

8.84.3.7 Serialize() [4/10] . 317

8.84.3.8 Serialize() [5/10] . 318

8.84.3.9 Serialize() [6/10] . 318

8.84.3.10 Serialize() [7/10] . 318

8.84.3.11 Serialize() [8/10] . 318

8.84.3.12 Serialize() [9/10] . 318

8.84.3.13 Serialize() [10/10] . 318

8.84.3.14 ToArray() . 319

8.84.4 Property Documentation . 319

8.84.4.1 Count . 319

8.84.4.2 IsReading . 319

8.84.4.3 IsWriting . 319

8.85 PhotonStreamQueue Class Reference . 319

8.85.1 Detailed Description . 320

8.85.2 Constructor & Destructor Documentation . 320

Generated by Doxygen

xxviii

8.85.2.1 PhotonStreamQueue() . 320

8.85.3 Member Function Documentation . 320

8.85.3.1 Deserialize() . 321

8.85.3.2 HasQueuedObjects() . 321

8.85.3.3 ReceiveNext() . 321

8.85.3.4 Reset() . 321

8.85.3.5 SendNext() . 321

8.85.3.6 Serialize() . 322

8.86 PhotonTeam Class Reference . 322

8.87 PhotonTeamExtensions Class Reference . 322

8.87.1 Detailed Description . 323

8.87.2 Member Function Documentation . 323

8.87.2.1 GetPhotonTeam() . 323

8.87.2.2 JoinTeam() [1/3] . 323

8.87.2.3 JoinTeam() [2/3] . 324

8.87.2.4 JoinTeam() [3/3] . 324

8.87.2.5 LeaveCurrentTeam() . 324

8.87.2.6 SwitchTeam() [1/3] . 325

8.87.2.7 SwitchTeam() [2/3] . 325

8.87.2.8 SwitchTeam() [3/3] . 326

8.87.2.9 TryGetTeamMates() . 326

8.88 PhotonTeamsManager Class Reference . 326

8.88.1 Detailed Description . 327

8.88.2 Member Function Documentation . 327

8.88.2.1 GetAvailableTeams() . 328

8.88.2.2 GetTeamMembersCount() [1/3] . 328

8.88.2.3 GetTeamMembersCount() [2/3] . 328

8.88.2.4 GetTeamMembersCount() [3/3] . 329

8.88.2.5 TryGetTeamByCode() . 329

8.88.2.6 TryGetTeamByName() . 329

8.88.2.7 TryGetTeamMatesOfPlayer() . 330

8.88.2.8 TryGetTeamMembers() [1/3] . 330

8.88.2.9 TryGetTeamMembers() [2/3] . 330

8.88.2.10 TryGetTeamMembers() [3/3] . 331

8.88.3 Member Data Documentation . 331

8.88.3.1 TeamPlayerProp . 331

8.89 PhotonTransformView Class Reference . 331

8.89.1 Member Function Documentation . 332

8.89.1.1 OnPhotonSerializeView() . 332

8.90 PhotonTransformViewClassic Class Reference . 333

8.90.1 Detailed Description . 333

8.90.2 Member Function Documentation . 333

Generated by Doxygen

xxix

8.90.2.1 OnPhotonSerializeView() . 334

8.90.2.2 SetSynchronizedValues() . 334

8.91 PhotonTransformViewPositionControl Class Reference . 335

8.91.1 Member Function Documentation . 335

8.91.1.1 GetExtrapolatedPositionOffset() . 335

8.91.1.2 GetNetworkPosition() . 335

8.91.1.3 SetSynchronizedValues() . 335

8.91.1.4 UpdatePosition() . 336

8.92 PhotonTransformViewPositionModel Class Reference . 336

8.93 PhotonTransformViewRotationControl Class Reference . 336

8.93.1 Member Function Documentation . 337

8.93.1.1 GetNetworkRotation() . 337

8.94 PhotonTransformViewRotationModel Class Reference . 337

8.95 PhotonTransformViewScaleControl Class Reference . 337

8.95.1 Member Function Documentation . 337

8.95.1.1 GetNetworkScale() . 338

8.96 PhotonTransformViewScaleModel Class Reference . 338

8.97 PhotonView Class Reference . 338

8.97.1 Detailed Description . 340

8.97.2 Member Function Documentation . 340

8.97.2.1 AddCallback< T >() . 341

8.97.2.2 AddCallbackTarget() . 341

8.97.2.3 Find() . 341

8.97.2.4 FindObservables() . 342

8.97.2.5 RefreshRpcMonoBehaviourCache() . 342

8.97.2.6 RemoveCallback< T >() . 342

8.97.2.7 RemoveCallbackTarget() . 342

8.97.2.8 RequestOwnership() . 343

8.97.2.9 RPC() [1/2] . 343

8.97.2.10 RPC() [2/2] . 343

8.97.2.11 RpcSecure() [1/2] . 344

8.97.2.12 RpcSecure() [2/2] . 345

8.97.2.13 TransferOwnership() [1/2] . 345

8.97.2.14 TransferOwnership() [2/2] . 345

8.97.3 Member Data Documentation . 345

8.97.3.1 OwnershipTransfer . 346

8.97.4 Property Documentation . 346

8.97.4.1 InstantiationData . 346

8.97.4.2 IsMine . 346

8.97.4.3 IsRoomView . 346

8.97.4.4 Owner . 346

8.97.4.5 ViewID . 347

Generated by Doxygen

xxx

8.98 PingMono Class Reference . 347

8.98.1 Detailed Description . 347

8.98.2 Member Function Documentation . 347

8.98.2.1 StartPing() . 347

8.99 Player Class Reference . 348

8.99.1 Detailed Description . 349

8.99.2 Member Function Documentation . 349

8.99.2.1 Equals() . 349

8.99.2.2 Get() . 349

8.99.2.3 GetHashCode() . 349

8.99.2.4 GetNext() . 350

8.99.2.5 GetNextFor() [1/2] . 350

8.99.2.6 GetNextFor() [2/2] . 350

8.99.2.7 SetCustomProperties() . 351

8.99.2.8 ToString() . 352

8.99.2.9 ToStringFull() . 352

8.99.3 Member Data Documentation . 352

8.99.3.1 IsLocal . 352

8.99.3.2 TagObject . 352

8.99.4 Property Documentation . 352

8.99.4.1 ActorNumber . 352

8.99.4.2 CustomProperties . 353

8.99.4.3 IsInactive . 353

8.99.4.4 IsMasterClient . 353

8.99.4.5 NickName . 353

8.99.4.6 UserId . 353

8.100 PlayerNumbering Class Reference . 354

8.100.1 Detailed Description . 355

8.100.2 Member Function Documentation . 355

8.100.2.1 OnJoinedRoom() . 355

8.100.2.2 OnLeftRoom() . 355

8.100.2.3 OnPlayerEnteredRoom() . 356

8.100.2.4 OnPlayerLeftRoom() . 356

8.100.2.5 OnPlayerPropertiesUpdate() . 356

8.100.2.6 PlayerNumberingChanged() . 357

8.100.2.7 RefreshData() . 357

8.100.3 Member Data Documentation . 357

8.100.3.1 dontDestroyOnLoad . 357

8.100.3.2 instance . 357

8.100.3.3 RoomPlayerIndexedProp . 357

8.100.4 Event Documentation . 357

8.100.4.1 OnPlayerNumberingChanged . 358

Generated by Doxygen

xxxi

8.101 PlayerNumberingExtensions Class Reference . 358

8.101.1 Detailed Description . 358

8.101.2 Member Function Documentation . 358

8.101.2.1 GetPlayerNumber() . 358

8.101.2.2 SetPlayerNumber() . 358

8.102 PointedAtGameObjectInfo Class Reference . 359

8.102.1 Detailed Description . 359

8.103 PunExtensions Class Reference . 359

8.103.1 Detailed Description . 360

8.103.2 Member Function Documentation . 360

8.103.2.1 AlmostEquals() [1/4] . 360

8.103.2.2 AlmostEquals() [2/4] . 360

8.103.2.3 AlmostEquals() [3/4] . 360

8.103.2.4 AlmostEquals() [4/4] . 361

8.104 PunPlayerScores Class Reference . 361

8.104.1 Detailed Description . 361

8.105 PunRPC Class Reference . 361

8.105.1 Detailed Description . 361

8.106 PunTeams Class Reference . 361

8.106.1 Detailed Description . 362

8.106.2 Member Enumeration Documentation . 362

8.106.2.1 Team . 362

8.106.3 Member Function Documentation . 362

8.106.3.1 OnJoinedRoom() . 363

8.106.3.2 OnLeftRoom() . 363

8.106.3.3 OnPlayerEnteredRoom() . 363

8.106.3.4 OnPlayerLeftRoom() . 363

8.106.3.5 OnPlayerPropertiesUpdate() . 364

8.106.4 Member Data Documentation . 364

8.106.4.1 PlayersPerTeam . 364

8.106.4.2 TeamPlayerProp . 364

8.107 PunTurnManager Class Reference . 364

8.107.1 Detailed Description . 365

8.107.2 Member Function Documentation . 365

8.107.2.1 BeginTurn() . 365

8.107.2.2 GetPlayerFinishedTurn() . 366

8.107.2.3 OnEvent() . 366

8.107.2.4 OnRoomPropertiesUpdate() . 366

8.107.2.5 SendMove() . 367

8.107.3 Member Data Documentation . 367

8.107.3.1 EvFinalMove . 367

8.107.3.2 EvMove . 367

Generated by Doxygen

xxxii

8.107.3.3 TurnDuration . 367

8.107.3.4 TurnManagerEventOffset . 367

8.107.3.5 TurnManagerListener . 368

8.107.4 Property Documentation . 368

8.107.4.1 ElapsedTimeInTurn . 368

8.107.4.2 IsCompletedByAll . 368

8.107.4.3 IsFinishedByMe . 368

8.107.4.4 IsOver . 368

8.107.4.5 RemainingSecondsInTurn . 368

8.107.4.6 Turn . 369

8.108 RaiseEventOptions Class Reference . 369

8.108.1 Detailed Description . 369

8.108.2 Member Data Documentation . 369

8.108.2.1 CachingOption . 370

8.108.2.2 Default . 370

8.108.2.3 Flags . 370

8.108.2.4 InterestGroup . 370

8.108.2.5 Receivers . 370

8.108.2.6 SequenceChannel . 370

8.108.2.7 TargetActors . 371

8.109 Region Class Reference . 371

8.109.1 Property Documentation . 371

8.109.1.1 Cluster . 371

8.110 RegionHandler Class Reference . 371

8.110.1 Detailed Description . 372

8.110.2 Member Data Documentation . 372

8.110.2.1 PingImplementation . 372

8.110.3 Property Documentation . 372

8.110.3.1 BestRegion . 373

8.110.3.2 EnabledRegions . 373

8.110.3.3 SummaryToCache . 373

8.111 RegionPinger Class Reference . 373

8.111.1 Member Function Documentation . 374

8.111.1.1 ResolveHost() . 374

8.111.1.2 Start() . 374

8.112 Room Class Reference . 375

8.112.1 Detailed Description . 376

8.112.2 Constructor & Destructor Documentation . 376

8.112.2.1 Room() . 377

8.112.3 Member Function Documentation . 378

8.112.3.1 AddPlayer() . 378

8.112.3.2 ClearExpectedUsers() . 378

Generated by Doxygen

xxxiii

8.112.3.3 GetPlayer() . 378

8.112.3.4 SetCustomProperties() . 379

8.112.3.5 SetExpectedUsers() . 380

8.112.3.6 SetMasterClient() . 380

8.112.3.7 SetPropertiesListedInLobby() . 381

8.112.3.8 StorePlayer() . 381

8.112.3.9 ToString() . 381

8.112.3.10 ToStringFull() . 382

8.112.4 Property Documentation . 382

8.112.4.1 AutoCleanUp . 382

8.112.4.2 BroadcastPropertiesChangeToAll . 382

8.112.4.3 DeleteNullProperties . 382

8.112.4.4 EmptyRoomTtl . 383

8.112.4.5 ExpectedUsers . 383

8.112.4.6 IsOpen . 383

8.112.4.7 IsVisible . 383

8.112.4.8 LoadBalancingClient . 383

8.112.4.9 MasterClientId . 384

8.112.4.10 MaxPlayers . 384

8.112.4.11 Name . 384

8.112.4.12 PlayerCount . 384

8.112.4.13 Players . 384

8.112.4.14 PlayerTtl . 384

8.112.4.15 PropertiesListedInLobby . 385

8.112.4.16 PublishUserId . 385

8.112.4.17 SuppressPlayerInfo . 385

8.112.4.18 SuppressRoomEvents . 385

8.113 RoomInfo Class Reference . 385

8.113.1 Detailed Description . 387

8.113.2 Member Function Documentation . 387

8.113.2.1 Equals() . 387

8.113.2.2 GetHashCode() . 387

8.113.2.3 ToString() . 387

8.113.2.4 ToStringFull() . 388

8.113.3 Member Data Documentation . 388

8.113.3.1 autoCleanUp . 388

8.113.3.2 emptyRoomTtl . 388

8.113.3.3 expectedUsers . 388

8.113.3.4 isOpen . 388

8.113.3.5 isVisible . 389

8.113.3.6 masterClientId . 389

8.113.3.7 maxPlayers . 389

Generated by Doxygen

xxxiv

8.113.3.8 name . 389

8.113.3.9 playerTtl . 389

8.113.3.10 propertiesListedInLobby . 389

8.113.3.11 RemovedFromList . 390

8.113.4 Property Documentation . 390

8.113.4.1 CustomProperties . 390

8.113.4.2 IsOpen . 390

8.113.4.3 IsVisible . 390

8.113.4.4 MaxPlayers . 390

8.113.4.5 Name . 391

8.113.4.6 PlayerCount . 391

8.114 RoomOptions Class Reference . 391

8.114.1 Detailed Description . 392

8.114.2 Member Data Documentation . 392

8.114.2.1 CustomRoomProperties . 392

8.114.2.2 CustomRoomPropertiesForLobby . 392

8.114.2.3 EmptyRoomTtl . 392

8.114.2.4 MaxPlayers . 392

8.114.2.5 PlayerTtl . 393

8.114.2.6 Plugins . 393

8.114.3 Property Documentation . 393

8.114.3.1 BroadcastPropsChangeToAll . 393

8.114.3.2 CleanupCacheOnLeave . 393

8.114.3.3 DeleteNullProperties . 394

8.114.3.4 IsOpen . 394

8.114.3.5 IsVisible . 394

8.114.3.6 PublishUserId . 394

8.114.3.7 SuppressPlayerInfo . 394

8.114.3.8 SuppressRoomEvents . 395

8.115 SceneManagerHelper Class Reference . 395

8.116 ScoreExtensions Class Reference . 395

8.117 ServerSettings Class Reference . 395

8.117.1 Detailed Description . 396

8.117.2 Member Function Documentation . 396

8.117.2.1 IsAppId() . 396

8.117.2.2 ResetBestRegionCodeInPreferences() . 396

8.117.2.3 ToString() . 397

8.117.2.4 UseCloud() . 397

8.117.3 Member Data Documentation . 397

8.117.3.1 DevRegion . 397

8.117.4 Property Documentation . 397

8.117.4.1 BestRegionSummaryInPreferences . 397

Generated by Doxygen

xxxv

8.118 SmoothSyncMovement Class Reference . 398

8.118.1 Detailed Description . 398

8.118.2 Member Function Documentation . 398

8.118.2.1 OnPhotonSerializeView() . 398

8.119 StatesGui Class Reference . 399

8.119.1 Detailed Description . 399

8.120 SupportLogger Class Reference . 399

8.120.1 Detailed Description . 401

8.120.2 Member Function Documentation . 401

8.120.2.1 LogStats() . 401

8.120.2.2 OnConnected() . 401

8.120.2.3 OnConnectedToMaster() . 401

8.120.2.4 OnCreatedRoom() . 402

8.120.2.5 OnCreateRoomFailed() . 402

8.120.2.6 OnCustomAuthenticationFailed() . 402

8.120.2.7 OnCustomAuthenticationResponse() . 404

8.120.2.8 OnDisconnected() . 404

8.120.2.9 OnFriendListUpdate() . 404

8.120.2.10 OnJoinedLobby() . 405

8.120.2.11 OnJoinedRoom() . 405

8.120.2.12 OnJoinRandomFailed() . 405

8.120.2.13 OnJoinRoomFailed() . 406

8.120.2.14 OnLeftLobby() . 406

8.120.2.15 OnLeftRoom() . 406

8.120.2.16 OnLobbyStatisticsUpdate() . 407

8.120.2.17 OnMasterClientSwitched() . 407

8.120.2.18 OnPlayerEnteredRoom() . 407

8.120.2.19 OnPlayerLeftRoom() . 407

8.120.2.20 OnPlayerPropertiesUpdate() . 408

8.120.2.21 OnRegionListReceived() . 408

8.120.2.22 OnRoomListUpdate() . 408

8.120.2.23 OnRoomPropertiesUpdate() . 409

8.120.3 Member Data Documentation . 409

8.120.3.1 LogTrafficStats . 409

8.120.4 Property Documentation . 409

8.120.4.1 Client . 409

8.121 PhotonAnimatorView.SynchronizedLayer Class Reference . 409

8.122 PhotonAnimatorView.SynchronizedParameter Class Reference 410

8.123 TabViewManager.Tab Class Reference . 410

8.124 TabViewManager.TabChangeEvent Class Reference . 410

8.124.1 Detailed Description . 410

8.125 TabViewManager Class Reference . 410

Generated by Doxygen

xxxvi

8.125.1 Detailed Description . 411

8.125.2 Member Function Documentation . 411

8.125.2.1 SelectTab() . 411

8.125.3 Member Data Documentation . 411

8.125.3.1 OnTabChanged . 411

8.125.3.2 Tabs . 412

8.125.3.3 ToggleGroup . 412

8.126 TeamExtensions Class Reference . 412

8.126.1 Detailed Description . 412

8.126.2 Member Function Documentation . 412

8.126.2.1 GetTeam() . 412

8.126.2.2 SetTeam() . 412

8.127 TextButtonTransition Class Reference . 413

8.127.1 Detailed Description . 413

8.127.2 Member Data Documentation . 413

8.127.2.1 HoverColor . 413

8.127.2.2 NormalColor . 414

8.127.2.3 Selectable . 414

8.128 TextToggleIsOnTransition Class Reference . 414

8.128.1 Detailed Description . 414

8.128.2 Member Data Documentation . 415

8.128.2.1 HoverOffColor . 415

8.128.2.2 HoverOnColor . 415

8.128.2.3 NormalOffColor . 415

8.128.2.4 NormalOnColor . 415

8.128.2.5 toggle . 415

8.129 TurnExtensions Class Reference . 416

8.129.1 Member Function Documentation . 416

8.129.1.1 GetFinishedTurn() . 416

8.129.1.2 GetTurn() . 417

8.129.1.3 GetTurnStart() . 417

8.129.1.4 SetFinishedTurn() . 417

8.129.1.5 SetTurn() . 418

8.129.2 Member Data Documentation . 418

8.129.2.1 FinishedTurnPropKey . 418

8.129.2.2 TurnPropKey . 418

8.129.2.3 TurnStartPropKey . 418

8.130 TypedLobby Class Reference . 418

8.130.1 Detailed Description . 419

8.130.2 Constructor & Destructor Documentation . 419

8.130.2.1 TypedLobby() . 419

8.130.3 Member Data Documentation . 420

Generated by Doxygen

xxxvii

8.130.3.1 Default . 420

8.130.3.2 Name . 420

8.130.3.3 Type . 420

8.130.4 Property Documentation . 420

8.130.4.1 IsDefault . 420

8.131 TypedLobbyInfo Class Reference . 421

8.131.1 Detailed Description . 421

8.131.2 Member Data Documentation . 421

8.131.2.1 PlayerCount . 421

8.131.2.2 RoomCount . 421

8.132 WebFlags Class Reference . 421

8.132.1 Detailed Description . 422

8.132.2 Property Documentation . 422

8.132.2.1 HttpForward . 422

8.132.2.2 SendAuthCookie . 423

8.132.2.3 SendState . 423

8.132.2.4 SendSync . 423

8.133 WebRpcResponse Class Reference . 423

8.133.1 Detailed Description . 424

8.133.2 Constructor & Destructor Documentation . 424

8.133.2.1 WebRpcResponse() . 424

8.133.3 Member Function Documentation . 424

8.133.3.1 ToStringFull() . 424

8.133.4 Property Documentation . 424

8.133.4.1 Message . 424

8.133.4.2 Name . 425

8.133.4.3 Parameters . 425

8.133.4.4 ResultCode . 425

Index 427

Generated by Doxygen

Chapter 1

Main Page

1.1 Introduction

Photon is a real-time multiplayer game development framework that is fast, lean and flexible. Photon consists of a
server and multiple client SDKs for major platforms.

Photon Unity Network (PUN) is our is our take on a Unity specific, high-level solution: Matchmaking, easy to use
callbacks, components to synchronize GameObjects, Remote Procedure Calls (RPCs) and similar features provide
a great start. Beyond that is a solid, extensive API for more advanced control.

Full source code is available, so you can scale this package to support any type of multiplayer game you come up
with.

This package is compatible with the managed Photon Cloud service, which runs Photon Servers for you. A setup
window registers you (for free) in less than a minute.

Most notable features:

• Dead-easy API

• Lots of demos and an extensive PUN Basics Tutorial

• Server available as hosted service (free for development) or as "On Premise"

• Load-balanced! Scales across servers (with no extra effort)

• Outstanding performance of the Photon Server

• Dedicated servers. No NAT punch-through needed

• Offline mode: re-use your multiplayer code in singleplayer game modes

1.2 Documentation And Learning

There is an Online Documentation, which is considered a manual for PUN. This might become your primary
source for information.

This is the Reference Documentation for PUN. It summarizes the most important classes in the Public API module
and explains each class, method and field individually. This is generated from the source of PUN and should be
used to look up details on usage and parameters.

Aside from that, there are also Demos in the PUN package itself and a PUN Basics Tutorial online, which you
should check out.

2 Main Page

1.3 First Steps

Import PUN into a new, empty project. Register via the pop up "wizard" (ALT+P) to get you a free Photon Cloud
subscription (saving an initial AppId for you). Now you're ready to run and dissect the Demos.

Make sure to open and code the PUN Basics Tutorial.

Generated by Doxygen

Chapter 2

General Documentation

Brief overview of Photon, subscriptions, hosting options and how to start.

2.1 Photon Unity Networking - First steps

When you import PUN, the "Wizard" window will pop up. If not, find it in the Window menu as "Photon Unity
Networking". In the Wizard, either enter your email address to register for the Photon Cloud, enter the AppId of an
existing account or skip this step for the time being.

The Wizard creates a configuration in the project, named: PhotonServerSettings.

PUN consists of quite a few files, however most functionality is concentrated into: Photon.Pun.PhotonNetwork.
This class contains all functions and variables typically needed. If you ever have custom requirements, you can
always modify the source files - this plugin is just an implementation of Photon after all.

To learn how this API works, visit the online documentation for PUN

2.2 Photon

Photon Unity Networking (PUN) always connects to a dedicated Photon server, which provides matchmaking, load
balancing and in-room communication for players.

Behind the scenes PUN uses more than one server: A "Name Server" acts as point of entry and provides a list
of regional "Master Servers". A Master Server keeps track of rooms and provides the Matchmaking, while several
"Game Servers" run the actual rooms (matches).

2.2.1 Exit Games Cloud

The Exit Games Cloud provides hosted and load balanced Photon servers for you, fully managed by Exit Games.
Free trials are available and subscription costs for commercial use are competitively low.

The Public Cloud service runs a fixed logic, so the clients need to be authoritative.

Clients are separated by “application id” (identifies your game title) and a “game version”. Changing the game
version helps separate players with new and old client builds.

4 General Documentation

2.2.1.1 Subscriptions bought in Asset Store

Follow these steps when you bought an asset that includes a Photon Cloud subscription:

• Open the Dashboard and login.
https://dashboard.photonengine.com

• Select the application to upgrade and click "Add Coupon / PUN+".

• Enter your Unity Invoice Number.

Find your Unity Invoice Number in the Unity AssetStore:
https://www.assetstore.unity3d.com/en/#!/account/transactions
From the drop-down select the payment method used in your purchase.
Navigate to your purchase and copy the number following the "#" symbol (excluding the "#" and spaces).

2.2.2 Photon Server SDK

As alternative to the Photon Cloud service, you can run your own server and develop server side logic on top of our
"Load Balancing" C# solution. This gives you full control of the server logic.

The Photon Server SDK can be downloaded at this link

Read about how to start the server here.

Generated by Doxygen

Chapter 3

Network Simulation GUI

Simple GUI element to control the built-in network condition simulation.

The Photon client library can simulate network conditions for lag (message delay) and loss, which can be a good
tool for developer when testing with a local server or on near perfect network conditions.

To use it, add the component Photon.Pun.UtilityScripts.PhotonLagSimulationGui to an enabled GameObject in your
scene. At runtime, the top left of the screen shows the current roundtrip time (RTT) and the controls for network
simulation:

• RTT: The roundtrip time is the average of milliseconds until a message was acknowledged by the server. The
variance value (behind the +/-) shows how stable the rtt is (a lower value being better).

• "Sim" toggle: Enables and disables the simulation. A sudden, big change of network conditions might result
in disconnects.

• "Lag" slider: Adds a fixed delay to all outgoing and incoming messages. In milliseconds.

• "Jit" slider: Adds a random delay of "up to X milliseconds" per message.

• "Loss" slider: Drops the set percentage of messages. You can expect less than 2% drop in the internet today.

6 Network Simulation GUI

Generated by Doxygen

Chapter 4

Network Statistics GUI

The PhotonStatsGui is a simple GUI component to track and show network-metrics at runtime.

4.0.1 Usage

Just add the Photon.Pun.UtilityScripts.PhotonStatsGui component to any active GameObject in the hierarchy. A
window appears (at runtime) and shows the message count.

A few toggles let you configure the window:

• buttons: Show buttons for "stats on", "reset stats" and "to log"

• traffic: Show lower level network traffic (bytes per direction)

• health: Show timing of sending, dispatches and their longest gaps

4.0.2 Message Statistics

The top most values showns are counter for "messages". Any operation, response and event are counted. Shown
are the total count of outgoing, incoming and the sum of those messages as total and as average for the timespan
that is tracked.

4.0.2.1 Traffic Statistics

These are the byte and packet counters. Anything that leaves or arrives via network is counted here. Even if there
are few messages, they could be huge by accident and still cause less powerful clients to drop connection. You also
see that there are packages sent when you don't send messages. They keeps the connection alive.

4.0.2.2 Health Statistics

The block beginning with "longest delta between" is about the performance of your client. We measure how much
time passed between consecutive calls of send and dispatch. Usually they should be called ten times per second.
If these values go beyond one second, you should check why Update() calls are delayed.

8 Network Statistics GUI

4.0.3 Button "Reset"

This resets the stats but keeps tracking them. This is useful to track message counts for different situations.

4.0.4 Button "To Log"

Pressing this simply logs the current stat values. This can be useful to have a overview how things evolved or just
as reference.

4.0.5 Button "Stats On" (Enabling Traffic Stats)

The Photon library can track various network statistics but usually this feature is turned off. The PhotonStatsGui will
enable the tracking and show those values.

The "stats on" toggle in the Gui controls if traffic stats are collected at all. The "Traffic Stats On" checkbox in the
Inspector is the same value.

Generated by Doxygen

Chapter 5

Public API Module

The Public API module rounds up the most commonly used classes of PUN.

The classes which are most commonly used, are grouped into a Public API module, which is only a documentation
structure. Classes like Photon.Pun.PhotonNetwork and Photon.Pun.MonoBehaviourPunCallbacks are good entry
points to learn how to code with PUN.

Typically, classes for internal use are not public but there are a few exceptions to this where access may be of use,
if you know what you're doing.

Open the Public API module

10 Public API Module

Generated by Doxygen

Chapter 6

Module Documentation

6.1 Public API

Groups the most important classes that you need to understand early on.

Classes

• class PhotonNetwork

The main class to use the PhotonNetwork plugin. This class is static.

• class PhotonView

A PhotonView identifies an object across the network (viewID) and configures how the controlling client updates
remote instances.

• struct PhotonMessageInfo

Container class for info about a particular message, RPC or update.

• class PhotonStream

This container is used in OnPhotonSerializeView() to either provide incoming data of a PhotonView or for you to
provide it.

Enumerations

• enum ClientState

State values for a client, which handles switching Photon server types, some operations, etc.

• enum PunLogLevel

Used to define the level of logging output created by the PUN classes. Either log errors, info (some more) or full.

• enum RpcTarget

Enum of "target" options for RPCs. These define which remote clients get your RPC call.

Functions

• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

12 Module Documentation

6.1.1 Detailed Description

Groups the most important classes that you need to understand early on.

6.1.2 Enumeration Type Documentation

6.1.2.1 ClientState

enum ClientState [strong]

State values for a client, which handles switching Photon server types, some operations, etc.

Enumerator

PeerCreated Peer is created but not used yet.

Authenticating Transition state while connecting to a server. On the Photon Cloud this
sends the AppId and AuthenticationValues (UserID).

Authenticated Not Used.
JoiningLobby The client sent an OpJoinLobby and if this was done on the Master Server,

it will result in. Depending on the lobby, it gets room listings.

JoinedLobby The client is in a lobby, connected to the MasterServer. Depending on the
lobby, it gets room listings.

DisconnectingFromMasterServer Transition from MasterServer to GameServer.

ConnectingToGameServer Transition to GameServer (client authenticates and joins/creates a room).

ConnectedToGameServer Connected to GameServer (going to auth and join game).

Joining Transition state while joining or creating a room on GameServer.

Joined The client entered a room. The CurrentRoom and Players are known and
you can now raise events.

Leaving Transition state when leaving a room.

DisconnectingFromGameServer Transition from GameServer to MasterServer (after leaving a room/game).

ConnectingToMasterServer Connecting to MasterServer (includes sending authentication values).

Disconnecting The client disconnects (from any server). This leads to state Disconnected.

Disconnected The client is no longer connected (to any server). Connect to
MasterServer to go on.

ConnectedToMasterServer Connected to MasterServer. You might use matchmaking or join a lobby
now.

ConnectingToNameServer Client connects to the NameServer. This process includes low level
connecting and setting up encryption. When done, state becomes
ConnectedToNameServer.

ConnectedToNameServer Client is connected to the NameServer and established encryption
already. You should call OpGetRegions or ConnectToRegionMaster.

DisconnectingFromNameServer Clients disconnects (specifically) from the NameServer (usually to connect
to the MasterServer).

ConnectWithFallbackProtocol Client was unable to connect to Name Server and will attempt to connect
with an alternative network protocol (TCP).

Generated by Doxygen

6.1 Public API 13

6.1.2.2 PunLogLevel

enum PunLogLevel [strong]

Used to define the level of logging output created by the PUN classes. Either log errors, info (some more) or full.

Enumerator

ErrorsOnly Show only errors. Minimal output. Note: Some might be "runtime errors" which you have to
expect.

Informational Logs some of the workflow, calls and results.

Full Every available log call gets into the console/log. Only use for debugging.

6.1.2.3 RpcTarget

enum RpcTarget [strong]

Enum of "target" options for RPCs. These define which remote clients get your RPC call.

Enumerator

All Sends the RPC to everyone else and executes it immediately on this client. Player who
join later will not execute this RPC.

Others Sends the RPC to everyone else. This client does not execute the RPC. Player who
join later will not execute this RPC.

MasterClient Sends the RPC to MasterClient only. Careful: The MasterClient might disconnect
before it executes the RPC and that might cause dropped RPCs.

AllBuffered Sends the RPC to everyone else and executes it immediately on this client. New
players get the RPC when they join as it's buffered (until this client leaves).

OthersBuffered Sends the RPC to everyone. This client does not execute the RPC. New players get
the RPC when they join as it's buffered (until this client leaves).

AllViaServer Sends the RPC to everyone (including this client) through the server. This client
executes the RPC like any other when it received it from the server. Benefit: The
server's order of sending the RPCs is the same on all clients.

AllBufferedViaServer Sends the RPC to everyone (including this client) through the server and buffers it for
players joining later. This client executes the RPC like any other when it received it
from the server. Benefit: The server's order of sending the RPCs is the same on all
clients.

6.1.3 Function Documentation

6.1.3.1 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

Generated by Doxygen

14 Module Documentation

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

This method will be called in scripts that are assigned as Observed component of a PhotonView.
PhotonNetwork.SerializationRate affects how often this method is called.
PhotonNetwork.SendRate affects how often packages are sent by this client.

Implementing this method, you can customize which data a PhotonView regularly synchronizes. Your code defines
what is being sent (content) and how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it is assigned to a PhotonView as Photon←↩

View.observed script.

To make use of this method, the PhotonStream is essential. It will be in "writing" mode" on the client that controls a
PhotonView (PhotonStream.IsWriting == true) and in "reading mode" on the remote clients that just receive that the
controlling client sends.

If you skip writing any value into the stream, PUN will skip the update. Used carefully, this can conserve bandwidth
and messages (which have a limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when the sender does not send any update. This
can't be used as "x-times per second Update()".

Implemented in PhotonAnimatorView, CullingHandler, PhotonTransformViewClassic, PhotonTransformView,
PhotonRigidbodyView, PhotonRigidbody2DView, and SmoothSyncMovement.

Generated by Doxygen

6.2 Optional Gui Elements 15

6.2 Optional Gui Elements

Useful GUI elements for PUN.

Classes

• class PhotonLagSimulationGui

This MonoBehaviour is a basic GUI for the Photon client's network-simulation feature. It can modify lag (fixed delay),
jitter (random lag) and packet loss.

• class PhotonStatsGui

Basic GUI to show traffic and health statistics of the connection to Photon, toggled by shift+tab.

6.2.1 Detailed Description

Useful GUI elements for PUN.

Generated by Doxygen

16 Module Documentation

6.3 Callbacks

Callback Interfaces.

Classes

• interface IConnectionCallbacks

Collection of "organizational" callbacks for the Realtime Api to cover: Connection and Regions.

• interface ILobbyCallbacks

Collection of "organizational" callbacks for the Realtime Api to cover the Lobby.

• interface IMatchmakingCallbacks

Collection of "organizational" callbacks for the Realtime Api to cover Matchmaking.

• interface IInRoomCallbacks

Collection of "in room" callbacks for the Realtime Api to cover: Players entering or leaving, property updates and
Master Client switching.

• interface IOnEventCallback

Event callback for the Realtime Api. Covers events from the server and those sent by clients via OpRaiseEvent.

• interface IWebRpcCallback

Interface for "WebRpc" callbacks for the Realtime Api. Currently includes only responses for Web RPCs.

• interface IErrorInfoCallback

Interface for EventCode.ErrorInfo event callback for the Realtime Api.

• interface IPunObservable

Defines the OnPhotonSerializeView method to make it easy to implement correctly for observable scripts.

• interface IPunInstantiateMagicCallback
• class MonoBehaviourPunCallbacks

This class provides a .photonView and all callbacks/events that PUN can call. Override the events/methods you want
to use.

6.3.1 Detailed Description

Callback Interfaces.

Generated by Doxygen

Chapter 7

Namespace Documentation

7.1 Photon Namespace Reference

7.2 Photon.Chat Namespace Reference

Classes

• class AuthenticationValues

Container for user authentication in Photon. Set AuthValues before you connect - all else is handled.

• class ChannelCreationOptions
• class ChannelWellKnownProperties
• class ChatAppSettings

Settings for Photon application(s) and the server to connect to.

• class ChatChannel

A channel of communication in Photon Chat, updated by ChatClient and provided as READ ONLY.

• class ChatClient

Central class of the Photon Chat API to connect, handle channels and messages.

• class ChatEventCode

Wraps up internally used constants in Photon Chat events. You don't have to use them directly usually.

• class ChatOperationCode

Wraps up codes for operations used internally in Photon Chat. You don't have to use them directly usually.

• class ChatParameterCode

Wraps up codes for parameters (in operations and events) used internally in Photon Chat. You don't have to use them
directly usually.

• class ChatPeer

Provides basic operations of the Photon Chat server. This internal class is used by public ChatClient.

• class ChatUserStatus

Contains commonly used status values for SetOnlineStatus. You can define your own.

• class ErrorCode

ErrorCode defines the default codes associated with Photon client/server communication.

• interface IChatClientListener

Callback interface for Chat client side. Contains callback methods to notify your app about updates. Must be provided
to new ChatClient in constructor

• class ParameterCode

Class for constants. Codes for parameters of Operations and Events.

18 Namespace Documentation

Enumerations

• enum ChatDisconnectCause

Enumeration of causes for Disconnects (used in ChatClient.DisconnectedCause).

• enum CustomAuthenticationType : byte

Options for optional "Custom Authentication" services used with Photon. Used by OpAuthenticate after connecting to
Photon.

• enum ChatState

Possible states for a Chat Client.

7.2.1 Enumeration Type Documentation

7.2.1.1 ChatDisconnectCause

enum ChatDisconnectCause [strong]

Enumeration of causes for Disconnects (used in ChatClient.DisconnectedCause).

Read the individual descriptions to find out what to do about this type of disconnect.

Enumerator

None No error was tracked.
ExceptionOnConnect OnStatusChanged: The server is not available or the address is

wrong. Make sure the port is provided and the server is up.

DisconnectByServerLogic OnStatusChanged: The server disconnected this client from within
the room's logic (the C# code).

DisconnectByServerReasonUnknown OnStatusChanged: The server disconnected this client for unknown
reasons.

ServerTimeout OnStatusChanged: The server disconnected this client due to timing
out (missing acknowledgement from the client).

ClientTimeout OnStatusChanged: This client detected that the server's responses
are not received in due time.

Exception OnStatusChanged: Some internal exception caused the socket code
to fail. Contact Exit Games.

InvalidAuthentication OnOperationResponse: Authenticate in the Photon Cloud with invalid
AppId. Update your subscription or contact Exit Games.

MaxCcuReached OnOperationResponse: Authenticate (temporarily) failed when using
a Photon Cloud subscription without CCU Burst. Update your
subscription.

InvalidRegion OnOperationResponse: Authenticate when the app's Photon Cloud
subscription is locked to some (other) region(s). Update your
subscription or change region.

OperationNotAllowedInCurrentState OnOperationResponse: Operation that's (currently) not available for
this client (not authorized usually). Only tracked for op Authenticate.

CustomAuthenticationFailed OnOperationResponse: Authenticate in the Photon Cloud with invalid
client values or custom authentication setup in Cloud Dashboard.

AuthenticationTicketExpired The authentication ticket should provide access to any Photon Cloud
server without doing another authentication-service call. However, the
ticket expired.

DisconnectByClientLogic OnStatusChanged: The client disconnected from within the logic (the
C# code). Generated by Doxygen

7.2 Photon.Chat Namespace Reference 19

7.2.1.2 ChatState

enum ChatState [strong]

Possible states for a Chat Client.

Enumerator

Uninitialized Peer is created but not used yet.

ConnectingToNameServer Connecting to name server.

ConnectedToNameServer Connected to name server.
Authenticating Authenticating on current server.

Authenticated Finished authentication on current server.
DisconnectingFromNameServer Disconnecting from name server. This is usually a transition from name

server to frontend server.
ConnectingToFrontEnd Connecting to frontend server.

ConnectedToFrontEnd Connected to frontend server.
DisconnectingFromFrontEnd Disconnecting from frontend server.

QueuedComingFromFrontEnd Currently not used.

Disconnecting The client disconnects (from any server).

Disconnected The client is no longer connected (to any server).

ConnectWithFallbackProtocol Client was unable to connect to Name Server and will attempt to connect
with an alternative network protocol (TCP).

7.2.1.3 CustomAuthenticationType

enum CustomAuthenticationType : byte [strong]

Options for optional "Custom Authentication" services used with Photon. Used by OpAuthenticate after connecting
to Photon.

Enumerator

Custom Use a custom authentication service. Currently the only implemented option.

Steam Authenticates users by their Steam Account. Set auth values accordingly!

Facebook Authenticates users by their Facebook Account. Set auth values accordingly!

Oculus Authenticates users by their Oculus Account and token.

PlayStation4 Authenticates users by their PSN Account and token on PS4.

Xbox Authenticates users by their Xbox Account and XSTS token.

Viveport Authenticates users by their HTC Viveport Account and user token. Set AuthGetParameters
to "userToken=[userToken]"

NintendoSwitch Authenticates users by their NSA ID.

PlayStation5 Authenticates users by their PSN Account and token on PS5.

None Disables custom authentication. Same as not providing any AuthenticationValues for
connect (more precisely for: OpAuthenticate).

Generated by Doxygen

20 Namespace Documentation

7.3 Photon.Pun Namespace Reference

Classes

• class CustomTypes

Internally used class, containing de/serialization method for PUN specific classes.

• class DefaultPool

The default implementation of a PrefabPool for PUN, which actually Instantiates and Destroys GameObjects but pools
a resource.

• struct InstantiateParameters
• interface IOnPhotonViewControllerChange

This interface defines a callback for changes to the PhotonView's controller.

• interface IOnPhotonViewOwnerChange

This interface defines a callback for changes to the PhotonView's owner.

• interface IOnPhotonViewPreNetDestroy

This interface defines a callback which fires prior to the PhotonNetwork destroying the PhotonView and Gameobject.

• interface IPhotonViewCallback

Empty Base class for all PhotonView callbacks.

• interface IPunInstantiateMagicCallback
• interface IPunObservable

Defines the OnPhotonSerializeView method to make it easy to implement correctly for observable scripts.

• interface IPunOwnershipCallbacks

Global Callback interface for ownership changes. These callbacks will fire for changes to ANY PhotonView that
changes. Consider using IOnPhotonViewControllerChange for callbacks from a specific PhotonView.

• interface IPunPrefabPool

Defines an interface for object pooling, used in PhotonNetwork.Instantiate and PhotonNetwork.Destroy.

• class MonoBehaviourPun

This class adds the property photonView, while logging a warning when your game still uses the networkView.

• class MonoBehaviourPunCallbacks

This class provides a .photonView and all callbacks/events that PUN can call. Override the events/methods you want
to use.

• class NestedComponentUtilities
• class PhotonAnimatorView

This class helps you to synchronize Mecanim animations Simply add the component to your GameObject and make
sure that the PhotonAnimatorView is added to the list of observed components

• class PhotonHandler

Internal MonoBehaviour that allows Photon to run an Update loop.

• struct PhotonMessageInfo

Container class for info about a particular message, RPC or update.

• class PhotonNetwork

The main class to use the PhotonNetwork plugin. This class is static.

• class PhotonRigidbody2DView
• class PhotonRigidbodyView
• class PhotonStream

This container is used in OnPhotonSerializeView() to either provide incoming data of a PhotonView or for you to
provide it.

• class PhotonStreamQueue

The PhotonStreamQueue helps you poll object states at higher frequencies than what PhotonNetwork.SendRate dic-
tates and then sends all those states at once when Serialize() is called. On the receiving end you can call Deserialize()
and then the stream will roll out the received object states in the same order and timeStep they were recorded in.

• class PhotonTransformView
• class PhotonTransformViewClassic

Generated by Doxygen

7.3 Photon.Pun Namespace Reference 21

This class helps you to synchronize position, rotation and scale of a GameObject. It also gives you many different
options to make the synchronized values appear smooth, even when the data is only send a couple of times per
second. Simply add the component to your GameObject and make sure that the PhotonTransformViewClassic is
added to the list of observed components

• class PhotonTransformViewPositionControl
• class PhotonTransformViewPositionModel
• class PhotonTransformViewRotationControl
• class PhotonTransformViewRotationModel
• class PhotonTransformViewScaleControl
• class PhotonTransformViewScaleModel
• class PhotonView

A PhotonView identifies an object across the network (viewID) and configures how the controlling client updates
remote instances.

• class PunEvent

Defines Photon event-codes as used by PUN.
• class PunExtensions

Small number of extension methods that make it easier for PUN to work cross-Unity-versions.
• class PunRPC

Replacement for RPC attribute with different name. Used to flag methods as remote-callable.
• class SceneManagerHelper
• class ServerSettings

Collection of connection-relevant settings, used internally by PhotonNetwork.ConnectUsingSettings.

Typedefs

• using Debug = UnityEngine.Debug
• using Hashtable = ExitGames.Client.Photon.Hashtable
• using SupportClassPun = ExitGames.Client.Photon.SupportClass

Enumerations

• enum ConnectMethod

Which PhotonNetwork method was called to connect (which influences the regions we want pinged).
• enum PunLogLevel

Used to define the level of logging output created by the PUN classes. Either log errors, info (some more) or full.
• enum RpcTarget

Enum of "target" options for RPCs. These define which remote clients get your RPC call.
• enum ViewSynchronization
• enum OwnershipOption

Options to define how Ownership Transfer is handled per PhotonView.

7.3.1 Enumeration Type Documentation

7.3.1.1 ConnectMethod

enum ConnectMethod [strong]

Which PhotonNetwork method was called to connect (which influences the regions we want pinged).

PhotonNetwork.ConnectUsingSettings will call either ConnectToMaster, ConnectToRegion or ConnectToBest, de-
pending on the settings.

Generated by Doxygen

22 Namespace Documentation

7.3.1.2 OwnershipOption

enum OwnershipOption [strong]

Options to define how Ownership Transfer is handled per PhotonView.

This setting affects how RequestOwnership and TransferOwnership work at runtime.

Enumerator

Fixed Ownership is fixed. Instantiated objects stick with their creator, room objects always belong to the
Master Client.

Takeover Ownership can be taken away from the current owner who can't object.

Request Ownership can be requested with PhotonView.RequestOwnership but the current owner has to
agree to give up ownership. The current owner has to implement
IPunCallbacks.OnOwnershipRequest to react to the ownership request.

7.4 Photon.Pun.UtilityScripts Namespace Reference

Classes

• class ButtonInsideScrollList

Button inside scroll list will stop scrolling ability of scrollRect container, so that when pressing down on a button and
draggin up and down will not affect scrolling. this doesn't do anything if no scrollRect component found in Parent
Hierarchy.

• class ByteComparer
• class CellTree

Represents the tree accessible from its root node.

• class CellTreeNode

Represents a single node of the tree.

• class ConnectAndJoinRandom

Simple component to call ConnectUsingSettings and to get into a PUN room easily.

• class CountdownTimer

This is a basic, network-synced CountdownTimer based on properties.

• class CullArea

Represents the cull area used for network culling.

• class CullingHandler

Handles the network culling.

• class EventSystemSpawner

Event system spawner. Will add an EventSystem GameObject with an EventSystem component and a Standalone←↩

InputModule component. Use this in additive scene loading context where you would otherwise get a "Multiple
EventSystem in scene... this is not supported" error from Unity.

• class GraphicToggleIsOnTransition

Use this on toggles texts to have some color transition on the text depending on the isOn State.

• interface IPunTurnManagerCallbacks
• class MoveByKeys

Very basic component to move a GameObject by WASD and Space.

• class OnClickDestroy

Destroys the networked GameObject either by PhotonNetwork.Destroy or by sending an RPC which calls Object.←↩

Destroy().

Generated by Doxygen

7.4 Photon.Pun.UtilityScripts Namespace Reference 23

• class OnClickInstantiate

Instantiates a networked GameObject on click.

• class OnClickRpc

This component will instantiate a network GameObject when in a room and the user click on that component's
GameObject. Uses PhysicsRaycaster for positioning.

• class OnEscapeQuit

This component will quit the application when escape key is pressed

• class OnJoinedInstantiate

This component will instantiate a network GameObject when a room is joined

• class OnPointerOverTooltip

Set focus to a given photonView when pointed is over

• class OnStartDelete

This component will destroy the GameObject it is attached to (in Start()).

• class PhotonLagSimulationGui

This MonoBehaviour is a basic GUI for the Photon client's network-simulation feature. It can modify lag (fixed delay),
jitter (random lag) and packet loss.

• class PhotonStatsGui

Basic GUI to show traffic and health statistics of the connection to Photon, toggled by shift+tab.

• class PhotonTeam
• class PhotonTeamExtensions

Extension methods for the Player class that make use of PhotonTeamsManager.

• class PhotonTeamsManager

Implements teams in a room/game with help of player properties. Access them by Player.GetTeam extension.

• class PlayerNumbering

Implements consistent numbering in a room/game with help of room properties. Access them by Player.GetPlayer←↩

Number() extension.

• class PlayerNumberingExtensions

Extension used for PlayerRoomIndexing and Player class.

• class PointedAtGameObjectInfo

Display ViewId, OwnerActorNr, IsCeneView and IsMine when clicked.

• class PunPlayerScores

Scoring system for PhotonPlayer

• class PunTeams

Implements teams in a room/game with help of player properties. Access them by Player.GetTeam extension.

• class PunTurnManager

Pun turnBased Game manager. Provides an Interface (IPunTurnManagerCallbacks) for the typical turn flow and logic,
between players Provides Extensions for Player, Room and RoomInfo to feature dedicated api for TurnBased Needs

• class ScoreExtensions
• class SmoothSyncMovement

Smoothed out movement for network gameobjects

• class StatesGui

Output detailed information about Pun Current states, using the old Unity UI framework.

• class TabViewManager

Tab view manager. Handles Tab views activation and deactivation, and provides a Unity Event Callback when a tab
was selected.

• class TeamExtensions

Extension used for PunTeams and Player class. Wraps access to the player's custom property.

• class TextButtonTransition

Use this on Button texts to have some color transition on the text as well without corrupting button's behaviour.

• class TextToggleIsOnTransition

Use this on toggles texts to have some color transition on the text depending on the isOn State.

• class TurnExtensions

Generated by Doxygen

24 Namespace Documentation

7.5 Photon.Realtime Namespace Reference

Classes

• class ActorProperties

Class for constants. These (byte) values define "well known" properties for an Actor / Player.

• class AppSettings

Settings for Photon application(s) and the server to connect to.

• class AuthenticationValues

Container for user authentication in Photon. Set AuthValues before you connect - all else is handled.

• class ConnectionCallbacksContainer

Container type for callbacks defined by IConnectionCallbacks. See LoadBalancingCallbackTargets.

• class ConnectionHandler
• class EnterRoomParams

Parameters for creating rooms.

• class ErrorCode

ErrorCode defines the default codes associated with Photon client/server communication.

• class ErrorInfo

Class wrapping the received EventCode.ErrorInfo event.

• class ErrorInfoCallbacksContainer

Container type for callbacks defined by IErrorInfoCallback. See LoadBalancingClient.ErrorInfoCallbackTargets.

• class EventCode

Class for constants. These values are for events defined by Photon LoadBalancing.

• class Extensions

This static class defines some useful extension methods for several existing classes (e.g. Vector3, float and others).

• class FindFriendsOptions

Options for OpFindFriends can be combined to filter which rooms of friends are returned.

• class FriendInfo

Used to store info about a friend's online state and in which room he/she is.

• class GamePropertyKey

Class for constants. These (byte) values are for "well known" room/game properties used in Photon LoadBalancing.

• interface IConnectionCallbacks

Collection of "organizational" callbacks for the Realtime Api to cover: Connection and Regions.

• interface IErrorInfoCallback

Interface for EventCode.ErrorInfo event callback for the Realtime Api.

• interface IInRoomCallbacks

Collection of "in room" callbacks for the Realtime Api to cover: Players entering or leaving, property updates and
Master Client switching.

• interface ILobbyCallbacks

Collection of "organizational" callbacks for the Realtime Api to cover the Lobby.

• interface IMatchmakingCallbacks

Collection of "organizational" callbacks for the Realtime Api to cover Matchmaking.

• class InRoomCallbacksContainer

Container type for callbacks defined by IInRoomCallbacks. See InRoomCallbackTargets.

• interface IOnEventCallback

Event callback for the Realtime Api. Covers events from the server and those sent by clients via OpRaiseEvent.

• interface IWebRpcCallback

Interface for "WebRpc" callbacks for the Realtime Api. Currently includes only responses for Web RPCs.

• class LoadBalancingClient

This class implements the Photon LoadBalancing workflow by using a LoadBalancingPeer. It keeps a state and will
automatically execute transitions between the Master and Game Servers.

Generated by Doxygen

7.5 Photon.Realtime Namespace Reference 25

• class LoadBalancingPeer

A LoadBalancingPeer provides the operations and enum definitions needed to use the LoadBalancing server appli-
cation which is also used in Photon Cloud.

• class LobbyCallbacksContainer

Container type for callbacks defined by ILobbyCallbacks. See LobbyCallbackTargets.

• class MatchMakingCallbacksContainer

Container type for callbacks defined by IMatchmakingCallbacks. See MatchMakingCallbackTargets.

• class OperationCode

Class for constants. Contains operation codes.

• class OpJoinRandomRoomParams

Parameters for the matchmaking of JoinRandomRoom and JoinRandomOrCreateRoom.

• class ParameterCode

Class for constants. Codes for parameters of Operations and Events.

• class PhotonAppSettings

Collection of connection-relevant settings, used internally by PhotonNetwork.ConnectUsingSettings.

• class PhotonPing

Abstract implementation of PhotonPing, ase for pinging servers to find the "Best Region".

• struct PhotonPortDefinition

Container for port definitions.

• class PingMono

Uses C# Socket class from System.Net.Sockets (as Unity usually does).

• class Player

Summarizes a "player" within a room, identified (in that room) by ID (or "actorNumber").

• class RaiseEventOptions

Aggregates several less-often used options for operation RaiseEvent. See field descriptions for usage details.

• class Region
• class RegionHandler

Provides methods to work with Photon's regions (Photon Cloud) and can be use to find the one with best ping.

• class RegionPinger
• class Room

This class represents a room a client joins/joined.

• class RoomInfo

A simplified room with just the info required to list and join, used for the room listing in the lobby. The properties are
not settable (IsOpen, MaxPlayers, etc).

• class RoomOptions

Wraps up common room properties needed when you create rooms. Read the individual entries for more details.

• class SupportLogger

Helper class to debug log basic information about Photon client and vital traffic statistics.

• class TypedLobby

Refers to a specific lobby on the server.

• class TypedLobbyInfo

Info for a lobby on the server. Used when LoadBalancingClient.EnableLobbyStatistics is true.

• class WebFlags

Optional flags to be used in Photon client SDKs with Op RaiseEvent and Op SetProperties. Introduced mainly for
webhooks 1.2 to control behavior of forwarded HTTP requests.

• class WebRpcCallbacksContainer

Container type for callbacks defined by IWebRpcCallback. See WebRpcCallbackTargets.

• class WebRpcResponse

Reads an operation response of a WebRpc and provides convenient access to most common values.

Generated by Doxygen

26 Namespace Documentation

Typedefs

• using SupportClass = ExitGames.Client.Photon.SupportClass
• using Stopwatch = System.Diagnostics.Stopwatch

Enumerations

• enum ClientState

State values for a client, which handles switching Photon server types, some operations, etc.
• enum DisconnectCause

Enumeration of causes for Disconnects (used in LoadBalancingClient.DisconnectedCause).
• enum ServerConnection

Available server (types) for internally used field: server.
• enum ClientAppType

Defines which sort of app the LoadBalancingClient is used for: Realtime or Voice.
• enum EncryptionMode

Defines how the communication gets encrypted.
• enum JoinMode : byte

Defines possible values for OpJoinRoom and OpJoinOrCreate. It tells the server if the room can be only be joined
normally, created implicitly or found on a web-service for Turnbased games.

• enum MatchmakingMode : byte

Options for matchmaking rules for OpJoinRandom.
• enum ReceiverGroup : byte

Lite - OpRaiseEvent lets you chose which actors in the room should receive events. By default, events are sent to
"Others" but you can overrule this.

• enum EventCaching : byte

Lite - OpRaiseEvent allows you to cache events and automatically send them to joining players in a room. Events
are cached per event code and player: Event 100 (example!) can be stored once per player. Cached events can be
modified, replaced and removed.

• enum PropertyTypeFlag : byte

Flags for "types of properties", being used as filter in OpGetProperties.
• enum LobbyType : byte

Types of lobbies define their behaviour and capabilities. Check each value for details.
• enum AuthModeOption

Options for authentication modes. From "classic" auth on each server to AuthOnce (on NameServer).
• enum CustomAuthenticationType : byte

Options for optional "Custom Authentication" services used with Photon. Used by OpAuthenticate after connecting to
Photon.

7.5.1 Enumeration Type Documentation

7.5.1.1 AuthModeOption

enum AuthModeOption [strong]

Options for authentication modes. From "classic" auth on each server to AuthOnce (on NameServer).

7.5.1.2 ClientAppType

enum ClientAppType [strong]

Defines which sort of app the LoadBalancingClient is used for: Realtime or Voice.

Generated by Doxygen

7.5 Photon.Realtime Namespace Reference 27

Enumerator

Realtime Realtime apps are for gaming / interaction. Also used by PUN 2.

Voice Voice apps stream audio.

Fusion Fusion clients are for matchmaking and relay in Photon Fusion.

7.5.1.3 CustomAuthenticationType

enum CustomAuthenticationType : byte [strong]

Options for optional "Custom Authentication" services used with Photon. Used by OpAuthenticate after connecting
to Photon.

Enumerator

Custom Use a custom authentication service. Currently the only implemented option.

Steam Authenticates users by their Steam Account. Set auth values accordingly!

Facebook Authenticates users by their Facebook Account. Set auth values accordingly!

Oculus Authenticates users by their Oculus Account and token.

PlayStation4 Authenticates users by their PSN Account and token on PS4.

Xbox Authenticates users by their Xbox Account and XSTS token.

Viveport Authenticates users by their HTC Viveport Account and user token. Set AuthGetParameters
to "userToken=[userToken]"

NintendoSwitch Authenticates users by their NSA ID.

PlayStation5 Authenticates users by their PSN Account and token on PS5.

None Disables custom authentication. Same as not providing any AuthenticationValues for
connect (more precisely for: OpAuthenticate).

7.5.1.4 DisconnectCause

enum DisconnectCause [strong]

Enumeration of causes for Disconnects (used in LoadBalancingClient.DisconnectedCause).

Read the individual descriptions to find out what to do about this type of disconnect.

Enumerator

None No error was tracked.
ExceptionOnConnect OnStatusChanged: The server is not available or the address is

wrong. Make sure the port is provided and the server is up.

DnsExceptionOnConnect OnStatusChanged: Dns resolution for a hostname failed. The
exception for this is being catched and logged with error level.

ServerAddressInvalid OnStatusChanged: The server address was parsed as IPv4 illegally.
An illegal address would be e.g. 192.168.1.300.
IPAddress.TryParse() will let this pass but our check won't.

Generated by Doxygen

28 Namespace Documentation

Enumerator

Exception OnStatusChanged: Some internal exception caused the socket code
to fail. This may happen if you attempt to connect locally but the
server is not available. In doubt: Contact Exit Games.

ServerTimeout OnStatusChanged: The server disconnected this client due to timing
out (missing acknowledgement from the client).

ClientTimeout OnStatusChanged: This client detected that the server's responses
are not received in due time.

DisconnectByServerLogic OnStatusChanged: The server disconnected this client from within
the room's logic (the C# code).

DisconnectByServerReasonUnknown OnStatusChanged: The server disconnected this client for unknown
reasons.

InvalidAuthentication OnOperationResponse: Authenticate in the Photon Cloud with invalid
AppId. Update your subscription or contact Exit Games.

CustomAuthenticationFailed OnOperationResponse: Authenticate in the Photon Cloud with invalid
client values or custom authentication setup in Cloud Dashboard.

AuthenticationTicketExpired The authentication ticket should provide access to any Photon Cloud
server without doing another authentication-service call. However, the
ticket expired.

MaxCcuReached OnOperationResponse: Authenticate (temporarily) failed when using
a Photon Cloud subscription without CCU Burst. Update your
subscription.

InvalidRegion OnOperationResponse: Authenticate when the app's Photon Cloud
subscription is locked to some (other) region(s). Update your
subscription or master server address.

OperationNotAllowedInCurrentState OnOperationResponse: Operation that's (currently) not available for
this client (not authorized usually). Only tracked for op Authenticate.

DisconnectByClientLogic OnStatusChanged: The client disconnected from within the logic (the
C# code).

DisconnectByOperationLimit The client called an operation too frequently and got disconnected
due to hitting the OperationLimit. This triggers a client-side
disconnect, too. To protect the server, some operations have a limit.
When an OperationResponse fails with
ErrorCode.OperationLimitReached, the client disconnects.

DisconnectByDisconnectMessage The client received a "Disconnect Message" from the server. Check
the debug logs for details.

7.5.1.5 EncryptionMode

enum EncryptionMode [strong]

Defines how the communication gets encrypted.

Enumerator

PayloadEncryption This is the default encryption mode: Messages get encrypted only
on demand (when you send operations with the "encrypt" parameter
set to true).

DatagramEncryption With this encryption mode for UDP, the connection gets setup and
all further datagrams get encrypted almost entirely. On-demand
message encryption (like in PayloadEncryption) is unavailable.

Generated by Doxygen

7.5 Photon.Realtime Namespace Reference 29

Enumerator

DatagramEncryptionRandomSequence With this encryption mode for UDP, the connection gets setup with
random sequence numbers and all further datagrams get encrypted
almost entirely. On-demand message encryption (like in
PayloadEncryption) is unavailable.

DatagramEncryptionGCM Datagram Encryption with GCM.

7.5.1.6 EventCaching

enum EventCaching : byte [strong]

Lite - OpRaiseEvent allows you to cache events and automatically send them to joining players in a room. Events
are cached per event code and player: Event 100 (example!) can be stored once per player. Cached events can be
modified, replaced and removed.

Caching works only combination with ReceiverGroup options Others and All.

Enumerator

DoNotCache Default value (not sent).

MergeCache Will merge this event's keys with those already cached.

ReplaceCache Replaces the event cache for this eventCode with this event's
content.

RemoveCache Removes this event (by eventCode) from the cache.

AddToRoomCache Adds an event to the room's cache
AddToRoomCacheGlobal Adds this event to the cache for actor 0 (becoming a "globally

owned" event in the cache).

RemoveFromRoomCache Remove fitting event from the room's cache.

RemoveFromRoomCacheForActorsLeft Removes events of players who already left the room (cleaning up).

SliceIncreaseIndex Increase the index of the sliced cache.
SliceSetIndex Set the index of the sliced cache. You must set

RaiseEventOptions.CacheSliceIndex for this.

SlicePurgeIndex Purge cache slice with index. Exactly one slice is removed from
cache. You must set RaiseEventOptions.CacheSliceIndex for this.

SlicePurgeUpToIndex Purge cache slices with specified index and anything lower than
that. You must set RaiseEventOptions.CacheSliceIndex for this.

7.5.1.7 JoinMode

enum JoinMode : byte [strong]

Defines possible values for OpJoinRoom and OpJoinOrCreate. It tells the server if the room can be only be joined
normally, created implicitly or found on a web-service for Turnbased games.

These values are not directly used by a game but implicitly set.

Generated by Doxygen

30 Namespace Documentation

Enumerator

Default Regular join. The room must exist.

CreateIfNotExists Join or create the room if it's not existing. Used for OpJoinOrCreate for example.

JoinOrRejoin The room might be out of memory and should be loaded (if possible) from a Turnbased
web-service.

RejoinOnly Only re-join will be allowed. If the user is not yet in the room, this will fail.

7.5.1.8 LobbyType

enum LobbyType : byte [strong]

Types of lobbies define their behaviour and capabilities. Check each value for details.

Values of this enum must be matched by the server.

Enumerator

Default Standard type and behaviour: While joined to this lobby clients get room-lists and
JoinRandomRoom can use a simple filter to match properties (perfectly).

SqlLobby This lobby type lists rooms like Default but JoinRandom has a parameter for SQL-like
"where" clauses for filtering. This allows bigger, less, or and and combinations.

AsyncRandomLobby This lobby does not send lists of games. It is only used for OpJoinRandomRoom. It
keeps rooms available for a while when there are only inactive users left.

7.5.1.9 MatchmakingMode

enum MatchmakingMode : byte [strong]

Options for matchmaking rules for OpJoinRandom.

Enumerator

FillRoom Fills up rooms (oldest first) to get players together as fast as possible. Default. Makes
most sense with MaxPlayers > 0 and games that can only start with more players.

SerialMatching Distributes players across available rooms sequentially but takes filter into account.
Without filter, rooms get players evenly distributed.

RandomMatching Joins a (fully) random room. Expected properties must match but aside from this, any
available room might be selected.

7.5.1.10 PropertyTypeFlag

enum PropertyTypeFlag : byte [strong]

Generated by Doxygen

7.5 Photon.Realtime Namespace Reference 31

Flags for "types of properties", being used as filter in OpGetProperties.

Enumerator

None (0x00) Flag type for no property type.

Game (0x01) Flag type for game-attached properties.

Actor (0x02) Flag type for actor related propeties.

GameAndActor (0x01) Flag type for game AND actor properties. Equal to 'Game'

7.5.1.11 ReceiverGroup

enum ReceiverGroup : byte [strong]

Lite - OpRaiseEvent lets you chose which actors in the room should receive events. By default, events are sent to
"Others" but you can overrule this.

Enumerator

Others Default value (not sent). Anyone else gets my event.

All Everyone in the current room (including this peer) will get this event.

MasterClient The server sends this event only to the actor with the lowest actorNumber. The "master client"
does not have special rights but is the one who is in this room the longest time.

7.5.1.12 ServerConnection

enum ServerConnection [strong]

Available server (types) for internally used field: server.

Photon uses 3 different roles of servers: Name Server, Master Server and Game Server.

Enumerator

MasterServer This server is where matchmaking gets done and where clients can get lists of rooms in
lobbies.

GameServer This server handles a number of rooms to execute and relay the messages between players
(in a room).

NameServer This server is used initially to get the address (IP) of a Master Server for a specific region. Not
used for Photon OnPremise (self hosted).

Generated by Doxygen

32 Namespace Documentation

Generated by Doxygen

Chapter 8

Class Documentation

8.1 ActorProperties Class Reference

Class for constants. These (byte) values define "well known" properties for an Actor / Player.

Static Public Attributes

• const byte PlayerName = 255

(255) Name of a player/actor.

• const byte IsInactive = 254

(254) Tells you if the player is currently in this game (getting events live).

• const byte UserId = 253

(253) UserId of the player. Sent when room gets created with RoomOptions.PublishUserId = true.

8.1.1 Detailed Description

Class for constants. These (byte) values define "well known" properties for an Actor / Player.

These constants are used internally. "Custom properties" have to use a string-type as key. They can be assigned
at will.

8.1.2 Member Data Documentation

8.1.2.1 IsInactive

const byte IsInactive = 254 [static]

(254) Tells you if the player is currently in this game (getting events live).

A server-set value for async games, where players can leave the game and return later.

34 Class Documentation

8.1.2.2 PlayerName

const byte PlayerName = 255 [static]

(255) Name of a player/actor.

8.1.2.3 UserId

const byte UserId = 253 [static]

(253) UserId of the player. Sent when room gets created with RoomOptions.PublishUserId = true.

8.2 AppSettings Class Reference

Settings for Photon application(s) and the server to connect to.

Public Member Functions

• string ToStringFull ()

ToString but with more details.

• AppSettings CopyTo (AppSettings d)

Static Public Member Functions

• static bool IsAppId (string val)

Checks if a string is a Guid by attempting to create one.

Public Attributes

• string AppIdRealtime

AppId for Realtime or PUN.

• string AppIdFusion

AppId for Photon Fusion.

• string AppIdChat

AppId for Photon Chat.

• string AppIdVoice

AppId for Photon Voice.

• string AppVersion

The AppVersion can be used to identify builds and will split the AppId distinct "Virtual AppIds" (important for match-
making).

• bool UseNameServer = true

If false, the app will attempt to connect to a Master Server (which is obsolete but sometimes still necessary).

• string FixedRegion

Can be set to any of the Photon Cloud's region names to directly connect to that region.

• string BestRegionSummaryFromStorage

Generated by Doxygen

8.2 AppSettings Class Reference 35

Set to a previous BestRegionSummary value before connecting.

• string Server

The address (hostname or IP) of the server to connect to.

• int Port

If not null, this sets the port of the first Photon server to connect to (that will "forward" the client as needed).

• string ProxyServer

The address (hostname or IP and port) of the proxy server.

• ConnectionProtocol Protocol = ConnectionProtocol.Udp

The network level protocol to use.

• bool EnableProtocolFallback = true

Enables a fallback to another protocol in case a connect to the Name Server fails.

• AuthModeOption AuthMode = AuthModeOption.Auth

Defines how authentication is done. On each system, once or once via a WSS connection (safe).

• bool EnableLobbyStatistics

If true, the client will request the list of currently available lobbies.

• DebugLevel NetworkLogging = DebugLevel.ERROR

Log level for the network lib.

Properties

• bool IsMasterServerAddress [get]

If true, the Server field contains a Master Server address (if any address at all).

• bool IsBestRegion [get]

If true, the client should fetch the region list from the Name Server and find the one with best ping.

• bool IsDefaultNameServer [get]

If true, the default nameserver address for the Photon Cloud should be used.

• bool IsDefaultPort [get]

If true, the default ports for a protocol will be used.

8.2.1 Detailed Description

Settings for Photon application(s) and the server to connect to.

This is Serializable for Unity, so it can be included in ScriptableObject instances.

8.2.2 Member Function Documentation

8.2.2.1 IsAppId()

static bool IsAppId (

string val) [static]

Checks if a string is a Guid by attempting to create one.

Generated by Doxygen

36 Class Documentation

Parameters

val The potential guid to check.

Returns

True if new Guid(val) did not fail.

8.2.2.2 ToStringFull()

string ToStringFull ()

ToString but with more details.

8.2.3 Member Data Documentation

8.2.3.1 AppIdChat

string AppIdChat

AppId for Photon Chat.

8.2.3.2 AppIdFusion

string AppIdFusion

AppId for Photon Fusion.

8.2.3.3 AppIdRealtime

string AppIdRealtime

AppId for Realtime or PUN.

Generated by Doxygen

8.2 AppSettings Class Reference 37

8.2.3.4 AppIdVoice

string AppIdVoice

AppId for Photon Voice.

8.2.3.5 AppVersion

string AppVersion

The AppVersion can be used to identify builds and will split the AppId distinct "Virtual AppIds" (important for match-
making).

8.2.3.6 AuthMode

AuthModeOption AuthMode = AuthModeOption.Auth

Defines how authentication is done. On each system, once or once via a WSS connection (safe).

8.2.3.7 BestRegionSummaryFromStorage

string BestRegionSummaryFromStorage

Set to a previous BestRegionSummary value before connecting.

This is a value used when the client connects to the "Best Region". If this is null or empty, all regions gets pinged.
Providing a previous summary on connect, speeds up best region selection and makes the previously selected
region "sticky".

Unity clients should store the BestRegionSummary in the PlayerPrefs. You can store the new result by implement-
ing IConnectionCallbacks.OnConnectedToMaster. If LoadBalancingClient.SummaryToCache is not null, store this
string. To avoid storing the value multiple times, you could set SummaryToCache to null.

8.2.3.8 EnableLobbyStatistics

bool EnableLobbyStatistics

If true, the client will request the list of currently available lobbies.

Generated by Doxygen

38 Class Documentation

8.2.3.9 EnableProtocolFallback

bool EnableProtocolFallback = true

Enables a fallback to another protocol in case a connect to the Name Server fails.

See: LoadBalancingClient.EnableProtocolFallback.

8.2.3.10 FixedRegion

string FixedRegion

Can be set to any of the Photon Cloud's region names to directly connect to that region.

if this IsNullOrEmpty() AND UseNameServer == true, use BestRegion. else, use a server

8.2.3.11 NetworkLogging

DebugLevel NetworkLogging = DebugLevel.ERROR

Log level for the network lib.

8.2.3.12 Port

int Port

If not null, this sets the port of the first Photon server to connect to (that will "forward" the client as needed).

8.2.3.13 Protocol

ConnectionProtocol Protocol = ConnectionProtocol.Udp

The network level protocol to use.

8.2.3.14 ProxyServer

string ProxyServer

The address (hostname or IP and port) of the proxy server.

Generated by Doxygen

8.2 AppSettings Class Reference 39

8.2.3.15 Server

string Server

The address (hostname or IP) of the server to connect to.

8.2.3.16 UseNameServer

bool UseNameServer = true

If false, the app will attempt to connect to a Master Server (which is obsolete but sometimes still necessary).

if true, Server points to a NameServer (or is null, using the default), else it points to a MasterServer.

8.2.4 Property Documentation

8.2.4.1 IsBestRegion

bool IsBestRegion [get]

If true, the client should fetch the region list from the Name Server and find the one with best ping.

See "Best Region" in the online docs.

8.2.4.2 IsDefaultNameServer

bool IsDefaultNameServer [get]

If true, the default nameserver address for the Photon Cloud should be used.

8.2.4.3 IsDefaultPort

bool IsDefaultPort [get]

If true, the default ports for a protocol will be used.

8.2.4.4 IsMasterServerAddress

bool IsMasterServerAddress [get]

If true, the Server field contains a Master Server address (if any address at all).

Generated by Doxygen

40 Class Documentation

8.3 AuthenticationValues Class Reference

Container for user authentication in Photon. Set AuthValues before you connect - all else is handled.

Public Member Functions

• AuthenticationValues ()

Creates empty auth values without any info.
• AuthenticationValues (string userId)

Creates minimal info about the user. If this is authenticated or not, depends on the set AuthType.
• virtual void SetAuthPostData (string stringData)

Sets the data to be passed-on to the auth service via POST.
• virtual void SetAuthPostData (byte[] byteData)

Sets the data to be passed-on to the auth service via POST.
• virtual void SetAuthPostData (Dictionary< string, object > dictData)

Sets data to be passed-on to the auth service as Json (Content-Type: "application/json") via Post.
• virtual void AddAuthParameter (string key, string value)

Adds a key-value pair to the get-parameters used for Custom Auth (AuthGetParameters).
• override string ToString ()

Transform this object into string.
• AuthenticationValues CopyTo (AuthenticationValues copy)

Make a copy of the current object.

Properties

• CustomAuthenticationType AuthType [get, set]

The type of authentication provider that should be used. Defaults to None (no auth whatsoever).
• string AuthGetParameters [get, set]

This string must contain any (http get) parameters expected by the used authentication service. By default, username
and token.

• object AuthPostData [get]

Data to be passed-on to the auth service via POST. Default: null (not sent). Either string or byte[] (see setters).
• object Token [get, set]

Internal Photon token. After initial authentication, Photon provides a token for this client, subsequently used as
(cached) validation.

• string UserId [get, set]

The UserId should be a unique identifier per user. This is for finding friends, etc..

8.3.1 Detailed Description

Container for user authentication in Photon. Set AuthValues before you connect - all else is handled.

On Photon, user authentication is optional but can be useful in many cases. If you want to FindFriends, a unique ID
per user is very practical.

There are basically three options for user authentication: None at all, the client sets some UserId or you can use
some account web-service to authenticate a user (and set the UserId server-side).

Custom Authentication lets you verify end-users by some kind of login or token. It sends those values to Photon
which will verify them before granting access or disconnecting the client.

The AuthValues are sent in OpAuthenticate when you connect, so they must be set before you connect. If the
AuthValues.UserId is null or empty when it's sent to the server, then the Photon Server assigns a UserId!

The Photon Cloud Dashboard will let you enable this feature and set important server values for it. https←↩

://dashboard.photonengine.com

Generated by Doxygen

8.3 AuthenticationValues Class Reference 41

8.3.2 Constructor & Destructor Documentation

8.3.2.1 AuthenticationValues() [1/2]

AuthenticationValues ()

Creates empty auth values without any info.

8.3.2.2 AuthenticationValues() [2/2]

AuthenticationValues (

string userId)

Creates minimal info about the user. If this is authenticated or not, depends on the set AuthType.

Parameters

user←↩

Id
Some UserId to set in Photon.

8.3.3 Member Function Documentation

8.3.3.1 AddAuthParameter()

virtual void AddAuthParameter (

string key,

string value) [virtual]

Adds a key-value pair to the get-parameters used for Custom Auth (AuthGetParameters).

This method does uri-encoding for you.

Parameters

key Key for the value to set.

value Some value relevant for Custom Authentication.

Generated by Doxygen

42 Class Documentation

8.3.3.2 CopyTo()

AuthenticationValues CopyTo (

AuthenticationValues copy)

Make a copy of the current object.

Parameters

copy The object to be copied into.

Returns

The copied object.

8.3.3.3 SetAuthPostData() [1/3]

virtual void SetAuthPostData (

byte[] byteData) [virtual]

Sets the data to be passed-on to the auth service via POST.

AuthPostData is just one value. Each SetAuthPostData replaces any previous value. It can be either a string, a
byte[] or a dictionary.

Parameters

byteData Binary token / auth-data to pass on.

8.3.3.4 SetAuthPostData() [2/3]

virtual void SetAuthPostData (

Dictionary< string, object > dictData) [virtual]

Sets data to be passed-on to the auth service as Json (Content-Type: "application/json") via Post.

AuthPostData is just one value. Each SetAuthPostData replaces any previous value. It can be either a string, a
byte[] or a dictionary.

Parameters

dictData A authentication-data dictionary will be converted to Json and passed to the Auth webservice via
HTTP Post.

Generated by Doxygen

8.3 AuthenticationValues Class Reference 43

8.3.3.5 SetAuthPostData() [3/3]

virtual void SetAuthPostData (

string stringData) [virtual]

Sets the data to be passed-on to the auth service via POST.

AuthPostData is just one value. Each SetAuthPostData replaces any previous value. It can be either a string, a
byte[] or a dictionary.

Parameters

stringData String data to be used in the body of the POST request. Null or empty string will set AuthPostData
to null.

8.3.3.6 ToString()

override string ToString ()

Transform this object into string.

Returns

string representation of this object.

8.3.4 Property Documentation

8.3.4.1 AuthGetParameters

string AuthGetParameters [get], [set]

This string must contain any (http get) parameters expected by the used authentication service. By default, user-
name and token.

Maps to operation parameter 216. Standard http get parameters are used here and passed on to the service that's
defined in the server (Photon Cloud Dashboard).

8.3.4.2 AuthPostData

object AuthPostData [get]

Data to be passed-on to the auth service via POST. Default: null (not sent). Either string or byte[] (see setters).

Maps to operation parameter 214.

Generated by Doxygen

44 Class Documentation

8.3.4.3 AuthType

CustomAuthenticationType AuthType [get], [set]

The type of authentication provider that should be used. Defaults to None (no auth whatsoever).

Several auth providers are available and CustomAuthenticationType.Custom can be used if you build your own
service.

8.3.4.4 Token

object Token [get], [set]

Internal Photon token. After initial authentication, Photon provides a token for this client, subsequently used as
(cached) validation.

Any token for custom authentication should be set via SetAuthPostData or AddAuthParameter.

8.3.4.5 UserId

string UserId [get], [set]

The UserId should be a unique identifier per user. This is for finding friends, etc..

See remarks of AuthValues for info about how this is set and used.

8.4 AuthenticationValues Class Reference

Container for user authentication in Photon. Set AuthValues before you connect - all else is handled.

Public Member Functions

• AuthenticationValues ()

Creates empty auth values without any info.

• AuthenticationValues (string userId)

Creates minimal info about the user. If this is authenticated or not, depends on the set AuthType.

• virtual void SetAuthPostData (string stringData)

Sets the data to be passed-on to the auth service via POST.

• virtual void SetAuthPostData (byte[] byteData)

Sets the data to be passed-on to the auth service via POST.

• virtual void SetAuthPostData (Dictionary< string, object > dictData)

Sets data to be passed-on to the auth service as Json (Content-Type: "application/json") via Post.

• virtual void AddAuthParameter (string key, string value)

Adds a key-value pair to the get-parameters used for Custom Auth (AuthGetParameters).

• override string ToString ()

Transform this object into string.

• AuthenticationValues CopyTo (AuthenticationValues copy)

Make a copy of the current object.

Generated by Doxygen

8.4 AuthenticationValues Class Reference 45

Properties

• CustomAuthenticationType AuthType [get, set]

The type of authentication provider that should be used. Defaults to None (no auth whatsoever).

• string AuthGetParameters [get, set]

This string must contain any (http get) parameters expected by the used authentication service. By default, username
and token.

• object AuthPostData [get]

Data to be passed-on to the auth service via POST. Default: null (not sent). Either string or byte[] (see setters).

• object Token [get, set]

Internal Photon token. After initial authentication, Photon provides a token for this client, subsequently used as
(cached) validation.

• string UserId [get, set]

The UserId should be a unique identifier per user. This is for finding friends, etc..

8.4.1 Detailed Description

Container for user authentication in Photon. Set AuthValues before you connect - all else is handled.

On Photon, user authentication is optional but can be useful in many cases. If you want to FindFriends, a unique ID
per user is very practical.

There are basically three options for user authentication: None at all, the client sets some UserId or you can use
some account web-service to authenticate a user (and set the UserId server-side).

Custom Authentication lets you verify end-users by some kind of login or token. It sends those values to Photon
which will verify them before granting access or disconnecting the client.

The AuthValues are sent in OpAuthenticate when you connect, so they must be set before you connect. If the
AuthValues.UserId is null or empty when it's sent to the server, then the Photon Server assigns a UserId!

The Photon Cloud Dashboard will let you enable this feature and set important server values for it. https←↩

://dashboard.photonengine.com

8.4.2 Constructor & Destructor Documentation

8.4.2.1 AuthenticationValues() [1/2]

AuthenticationValues ()

Creates empty auth values without any info.

8.4.2.2 AuthenticationValues() [2/2]

AuthenticationValues (

string userId)

Creates minimal info about the user. If this is authenticated or not, depends on the set AuthType.

Generated by Doxygen

46 Class Documentation

Parameters

user←↩

Id
Some UserId to set in Photon.

8.4.3 Member Function Documentation

8.4.3.1 AddAuthParameter()

virtual void AddAuthParameter (

string key,

string value) [virtual]

Adds a key-value pair to the get-parameters used for Custom Auth (AuthGetParameters).

This method does uri-encoding for you.

Parameters

key Key for the value to set.

value Some value relevant for Custom Authentication.

8.4.3.2 CopyTo()

AuthenticationValues CopyTo (

AuthenticationValues copy)

Make a copy of the current object.

Parameters

copy The object to be copied into.

Returns

The copied object.

8.4.3.3 SetAuthPostData() [1/3]

virtual void SetAuthPostData (

byte[] byteData) [virtual]

Generated by Doxygen

8.4 AuthenticationValues Class Reference 47

Sets the data to be passed-on to the auth service via POST.

AuthPostData is just one value. Each SetAuthPostData replaces any previous value. It can be either a string, a
byte[] or a dictionary.

Parameters

byteData Binary token / auth-data to pass on.

8.4.3.4 SetAuthPostData() [2/3]

virtual void SetAuthPostData (

Dictionary< string, object > dictData) [virtual]

Sets data to be passed-on to the auth service as Json (Content-Type: "application/json") via Post.

AuthPostData is just one value. Each SetAuthPostData replaces any previous value. It can be either a string, a
byte[] or a dictionary.

Parameters

dictData A authentication-data dictionary will be converted to Json and passed to the Auth webservice via
HTTP Post.

8.4.3.5 SetAuthPostData() [3/3]

virtual void SetAuthPostData (

string stringData) [virtual]

Sets the data to be passed-on to the auth service via POST.

AuthPostData is just one value. Each SetAuthPostData replaces any previous value. It can be either a string, a
byte[] or a dictionary.

Parameters

stringData String data to be used in the body of the POST request. Null or empty string will set AuthPostData
to null.

8.4.3.6 ToString()

override string ToString ()

Transform this object into string.

Generated by Doxygen

48 Class Documentation

Returns

String info about this object's values.

8.4.4 Property Documentation

8.4.4.1 AuthGetParameters

string AuthGetParameters [get], [set]

This string must contain any (http get) parameters expected by the used authentication service. By default, user-
name and token.

Maps to operation parameter 216. Standard http get parameters are used here and passed on to the service that's
defined in the server (Photon Cloud Dashboard).

8.4.4.2 AuthPostData

object AuthPostData [get]

Data to be passed-on to the auth service via POST. Default: null (not sent). Either string or byte[] (see setters).

Maps to operation parameter 214.

8.4.4.3 AuthType

CustomAuthenticationType AuthType [get], [set]

The type of authentication provider that should be used. Defaults to None (no auth whatsoever).

Several auth providers are available and CustomAuthenticationType.Custom can be used if you build your own
service.

8.4.4.4 Token

object Token [get], [set]

Internal Photon token. After initial authentication, Photon provides a token for this client, subsequently used as
(cached) validation.

Any token for custom authentication should be set via SetAuthPostData or AddAuthParameter.

8.4.4.5 UserId

string UserId [get], [set]

The UserId should be a unique identifier per user. This is for finding friends, etc..

See remarks of AuthValues for info about how this is set and used.

Generated by Doxygen

8.5 ButtonInsideScrollList Class Reference 49

8.5 ButtonInsideScrollList Class Reference

Button inside scroll list will stop scrolling ability of scrollRect container, so that when pressing down on a button and
draggin up and down will not affect scrolling. this doesn't do anything if no scrollRect component found in Parent
Hierarchy.

Inherits MonoBehaviour, IPointerDownHandler, and IPointerUpHandler.

8.5.1 Detailed Description

Button inside scroll list will stop scrolling ability of scrollRect container, so that when pressing down on a button and
draggin up and down will not affect scrolling. this doesn't do anything if no scrollRect component found in Parent
Hierarchy.

8.6 ByteComparer Class Reference

Inherits IComparer< byte >.

Public Member Functions

• int Compare (byte x, byte y)

8.7 CellTree Class Reference

Represents the tree accessible from its root node.

Public Member Functions

• CellTree ()

Default constructor.

• CellTree (CellTreeNode root)

Constructor to define the root node.

Properties

• CellTreeNode RootNode [get]

Represents the root node of the cell tree.

8.7.1 Detailed Description

Represents the tree accessible from its root node.

Generated by Doxygen

50 Class Documentation

8.7.2 Constructor & Destructor Documentation

8.7.2.1 CellTree() [1/2]

CellTree ()

Default constructor.

8.7.2.2 CellTree() [2/2]

CellTree (

CellTreeNode root)

Constructor to define the root node.

Parameters

root The root node of the tree.

8.7.3 Property Documentation

8.7.3.1 RootNode

CellTreeNode RootNode [get]

Represents the root node of the cell tree.

8.8 CellTreeNode Class Reference

Represents a single node of the tree.

Public Types

• enum ENodeType : byte

Generated by Doxygen

8.8 CellTreeNode Class Reference 51

Public Member Functions

• CellTreeNode ()

Default constructor.
• CellTreeNode (byte id, ENodeType nodeType, CellTreeNode parent)

Constructor to define the ID and the node type as well as setting a parent node.
• void AddChild (CellTreeNode child)

Adds the given child to the node.
• void Draw ()

Draws the cell in the editor.
• void GetActiveCells (List< byte > activeCells, bool yIsUpAxis, Vector3 position)

Gathers all cell IDs the player is currently inside or nearby.
• bool IsPointInsideCell (bool yIsUpAxis, Vector3 point)

Checks if the given point is inside the cell.
• bool IsPointNearCell (bool yIsUpAxis, Vector3 point)

Checks if the given point is near the cell.

Public Attributes

• byte Id

Represents the unique ID of the cell.
• Vector3 Center

Represents the center, top-left or bottom-right position of the cell or the size of the cell.
• ENodeType NodeType

Describes the current node type of the cell tree node.
• CellTreeNode Parent

Reference to the parent node.
• List< CellTreeNode > Childs

A list containing all child nodes.

8.8.1 Detailed Description

Represents a single node of the tree.

8.8.2 Constructor & Destructor Documentation

8.8.2.1 CellTreeNode() [1/2]

CellTreeNode ()

Default constructor.

8.8.2.2 CellTreeNode() [2/2]

CellTreeNode (

byte id,

ENodeType nodeType,

CellTreeNode parent)

Constructor to define the ID and the node type as well as setting a parent node.

Generated by Doxygen

52 Class Documentation

Parameters

id The ID of the cell is used as the interest group.

nodeType The node type of the cell tree node.

parent The parent node of the cell tree node.

8.8.3 Member Function Documentation

8.8.3.1 AddChild()

void AddChild (

CellTreeNode child)

Adds the given child to the node.

Parameters

child The child which is added to the node.

8.8.3.2 Draw()

void Draw ()

Draws the cell in the editor.

8.8.3.3 GetActiveCells()

void GetActiveCells (

List< byte > activeCells,

bool yIsUpAxis,

Vector3 position)

Gathers all cell IDs the player is currently inside or nearby.

Parameters

activeCells The list to add all cell IDs to the player is currently inside or nearby.

yIsUpAxis Describes if the y-axis is used as up-axis.

position The current position of the player.

Generated by Doxygen

8.8 CellTreeNode Class Reference 53

8.8.3.4 IsPointInsideCell()

bool IsPointInsideCell (

bool yIsUpAxis,

Vector3 point)

Checks if the given point is inside the cell.

Parameters

yIsUpAxis Describes if the y-axis is used as up-axis.

point The point to check.

Returns

True if the point is inside the cell, false if the point is not inside the cell.

8.8.3.5 IsPointNearCell()

bool IsPointNearCell (

bool yIsUpAxis,

Vector3 point)

Checks if the given point is near the cell.

Parameters

yIsUpAxis Describes if the y-axis is used as up-axis.

point The point to check.

Returns

True if the point is near the cell, false if the point is too far away.

8.8.4 Member Data Documentation

8.8.4.1 Center

Vector3 Center

Represents the center, top-left or bottom-right position of the cell or the size of the cell.

Generated by Doxygen

54 Class Documentation

8.8.4.2 Childs

List<CellTreeNode> Childs

A list containing all child nodes.

8.8.4.3 Id

byte Id

Represents the unique ID of the cell.

8.8.4.4 NodeType

ENodeType NodeType

Describes the current node type of the cell tree node.

8.8.4.5 Parent

CellTreeNode Parent

Reference to the parent node.

8.9 ChannelCreationOptions Class Reference

Static Public Attributes

• static ChannelCreationOptions Default = new ChannelCreationOptions()

Default values of channel creation options.

Properties

• bool PublishSubscribers [get, set]

Whether or not the channel to be created will allow client to keep a list of users.

• int MaxSubscribers [get, set]

Limit of the number of users subscribed to the channel to be created.

8.9.1 Member Data Documentation

Generated by Doxygen

8.10 ChannelWellKnownProperties Class Reference 55

8.9.1.1 Default

ChannelCreationOptions Default = new ChannelCreationOptions() [static]

Default values of channel creation options.

8.9.2 Property Documentation

8.9.2.1 MaxSubscribers

int MaxSubscribers [get], [set]

Limit of the number of users subscribed to the channel to be created.

8.9.2.2 PublishSubscribers

bool PublishSubscribers [get], [set]

Whether or not the channel to be created will allow client to keep a list of users.

8.10 ChannelWellKnownProperties Class Reference

Static Public Attributes

• const byte MaxSubscribers = 255

• const byte PublishSubscribers = 254

8.11 ChatAppSettings Class Reference

Settings for Photon application(s) and the server to connect to.

Generated by Doxygen

56 Class Documentation

Public Attributes

• string AppIdChat

AppId for the Chat Api.

• string AppVersion

The AppVersion can be used to identify builds and will split the AppId distinct "Virtual AppIds" (important for the users
to find each other).

• string FixedRegion

Can be set to any of the Photon Cloud's region names to directly connect to that region.

• string Server

The address (hostname or IP) of the server to connect to.

• ushort Port

If not null, this sets the port of the first Photon server to connect to (that will "forward" the client as needed).

• ConnectionProtocol Protocol = ConnectionProtocol.Udp

The network level protocol to use.

• bool EnableProtocolFallback = true

Enables a fallback to another protocol in case a connect to the Name Server fails.

• DebugLevel NetworkLogging = DebugLevel.ERROR

Log level for the network lib.

Properties

• bool IsDefaultNameServer [get]

If true, the default nameserver address for the Photon Cloud should be used.

• string AppId [get, set]

Available to not immediately break compatibility.

8.11.1 Detailed Description

Settings for Photon application(s) and the server to connect to.

This is Serializable for Unity, so it can be included in ScriptableObject instances.

8.11.2 Member Data Documentation

8.11.2.1 AppIdChat

string AppIdChat

AppId for the Chat Api.

Generated by Doxygen

8.11 ChatAppSettings Class Reference 57

8.11.2.2 AppVersion

string AppVersion

The AppVersion can be used to identify builds and will split the AppId distinct "Virtual AppIds" (important for the
users to find each other).

8.11.2.3 EnableProtocolFallback

bool EnableProtocolFallback = true

Enables a fallback to another protocol in case a connect to the Name Server fails.

See: LoadBalancingClient.EnableProtocolFallback.

8.11.2.4 FixedRegion

string FixedRegion

Can be set to any of the Photon Cloud's region names to directly connect to that region.

8.11.2.5 NetworkLogging

DebugLevel NetworkLogging = DebugLevel.ERROR

Log level for the network lib.

8.11.2.6 Port

ushort Port

If not null, this sets the port of the first Photon server to connect to (that will "forward" the client as needed).

8.11.2.7 Protocol

ConnectionProtocol Protocol = ConnectionProtocol.Udp

The network level protocol to use.

Generated by Doxygen

58 Class Documentation

8.11.2.8 Server

string Server

The address (hostname or IP) of the server to connect to.

8.11.3 Property Documentation

8.11.3.1 AppId

string AppId [get], [set]

Available to not immediately break compatibility.

8.11.3.2 IsDefaultNameServer

bool IsDefaultNameServer [get]

If true, the default nameserver address for the Photon Cloud should be used.

8.12 ChatChannel Class Reference

A channel of communication in Photon Chat, updated by ChatClient and provided as READ ONLY.

Public Member Functions

• ChatChannel (string name)

Used internally to create new channels. This does NOT create a channel on the server! Use ChatClient.Subscribe.

• void Add (string sender, object message, int msgId)

Used internally to add messages to this channel.

• void Add (string[] senders, object[] messages, int lastMsgId)

Used internally to add messages to this channel.

• void TruncateMessages ()

Reduces the number of locally cached messages in this channel to the MessageLimit (if set).

• void ClearMessages ()

Clear the local cache of messages currently stored. This frees memory but doesn't affect the server.

• string ToStringMessages ()

Provides a string-representation of all messages in this channel.

Generated by Doxygen

8.12 ChatChannel Class Reference 59

Public Attributes

• readonly string Name

Name of the channel (used to subscribe and unsubscribe).

• readonly List< string > Senders = new List<string>()

Senders of messages in chronological order. Senders and Messages refer to each other by index. Senders[x] is the
sender of Messages[x].

• readonly List< object > Messages = new List<object>()

Messages in chronological order. Senders and Messages refer to each other by index. Senders[x] is the sender of
Messages[x].

• int MessageLimit

If greater than 0, this channel will limit the number of messages, that it caches locally.

• int ChannelID

Unique channel ID.

• readonly HashSet< string > Subscribers = new HashSet<string>()

Subscribed users.

Properties

• bool IsPrivate [get, set]

Is this a private 1:1 channel?

• int MessageCount [get]

Count of messages this client still buffers/knows for this channel.

• int LastMsgId [get, protected set]

ID of the last message received.

• bool PublishSubscribers [get, protected set]

Whether or not this channel keeps track of the list of its subscribers.

• int MaxSubscribers [get, protected set]

Maximum number of channel subscribers. 0 means infinite.

8.12.1 Detailed Description

A channel of communication in Photon Chat, updated by ChatClient and provided as READ ONLY.

Contains messages and senders to use (read!) and display by your GUI. Access these by: ChatClient.PublicChannels
ChatClient.PrivateChannels

8.12.2 Constructor & Destructor Documentation

8.12.2.1 ChatChannel()

ChatChannel (

string name)

Used internally to create new channels. This does NOT create a channel on the server! Use ChatClient.Subscribe.

Generated by Doxygen

60 Class Documentation

8.12.3 Member Function Documentation

8.12.3.1 Add() [1/2]

void Add (

string sender,

object message,

int msgId)

Used internally to add messages to this channel.

8.12.3.2 Add() [2/2]

void Add (

string[] senders,

object[] messages,

int lastMsgId)

Used internally to add messages to this channel.

8.12.3.3 ClearMessages()

void ClearMessages ()

Clear the local cache of messages currently stored. This frees memory but doesn't affect the server.

8.12.3.4 ToStringMessages()

string ToStringMessages ()

Provides a string-representation of all messages in this channel.

Returns

All known messages in format "Sender: Message", line by line.

Generated by Doxygen

8.12 ChatChannel Class Reference 61

8.12.3.5 TruncateMessages()

void TruncateMessages ()

Reduces the number of locally cached messages in this channel to the MessageLimit (if set).

8.12.4 Member Data Documentation

8.12.4.1 ChannelID

int ChannelID

Unique channel ID.

8.12.4.2 MessageLimit

int MessageLimit

If greater than 0, this channel will limit the number of messages, that it caches locally.

8.12.4.3 Messages

readonly List<object> Messages = new List<object>()

Messages in chronological order. Senders and Messages refer to each other by index. Senders[x] is the sender of
Messages[x].

8.12.4.4 Name

readonly string Name

Name of the channel (used to subscribe and unsubscribe).

Generated by Doxygen

62 Class Documentation

8.12.4.5 Senders

readonly List<string> Senders = new List<string>()

Senders of messages in chronological order. Senders and Messages refer to each other by index. Senders[x] is
the sender of Messages[x].

8.12.4.6 Subscribers

readonly HashSet<string> Subscribers = new HashSet<string>()

Subscribed users.

8.12.5 Property Documentation

8.12.5.1 IsPrivate

bool IsPrivate [get], [set]

Is this a private 1:1 channel?

8.12.5.2 LastMsgId

int LastMsgId [get], [protected set]

ID of the last message received.

8.12.5.3 MaxSubscribers

int MaxSubscribers [get], [protected set]

Maximum number of channel subscribers. 0 means infinite.

8.12.5.4 MessageCount

int MessageCount [get]

Count of messages this client still buffers/knows for this channel.

Generated by Doxygen

8.13 ChatClient Class Reference 63

8.12.5.5 PublishSubscribers

bool PublishSubscribers [get], [protected set]

Whether or not this channel keeps track of the list of its subscribers.

8.13 ChatClient Class Reference

Central class of the Photon Chat API to connect, handle channels and messages.

Inherits IPhotonPeerListener.

Public Member Functions

• bool CanChatInChannel (string channelName)

Checks if this client is ready to publish messages inside a public channel.

• ChatClient (IChatClientListener listener, ConnectionProtocol protocol=ConnectionProtocol.Udp)

Chat client constructor.

• bool ConnectUsingSettings (ChatAppSettings appSettings)
• bool Connect (string appId, string appVersion, AuthenticationValues authValues)

Connects this client to the Photon Chat Cloud service, which will also authenticate the user (and set a UserId).

• bool ConnectAndSetStatus (string appId, string appVersion, AuthenticationValues authValues, int
status=ChatUserStatus.Online, object message=null)

Connects this client to the Photon Chat Cloud service, which will also authenticate the user (and set a UserId).
This also sets an online status once connected. By default it will set user status to ChatUserStatus.Online. See
SetOnlineStatus(int,object) for more information.

• void Service ()

Must be called regularly to keep connection between client and server alive and to process incoming messages.

• void SendAcksOnly ()

Obsolete: Better use UseBackgroundWorkerForSending and Service().

• void Disconnect (ChatDisconnectCause cause=ChatDisconnectCause.DisconnectByClientLogic)

Disconnects from the Chat Server by sending a "disconnect command", which prevents a timeout server-side.

• void StopThread ()

Locally shuts down the connection to the Chat Server. This resets states locally but the server will have to timeout
this peer.

• bool Subscribe (string[] channels)

Sends operation to subscribe to a list of channels by name.

• bool Subscribe (string[] channels, int[] lastMsgIds)

Sends operation to subscribe to a list of channels by name and possibly retrieve messages we did not receive while
unsubscribed.

• bool Subscribe (string[] channels, int messagesFromHistory)

Sends operation to subscribe client to channels, optionally fetching a number of messages from the cache.

• bool Unsubscribe (string[] channels)

Unsubscribes from a list of channels, which stops getting messages from those.

• bool PublishMessage (string channelName, object message, bool forwardAsWebhook=false)

Sends a message to a public channel which this client subscribed to.

• bool SendPrivateMessage (string target, object message, bool forwardAsWebhook=false)

Sends a private message to a single target user. Calls OnPrivateMessage on the receiving client.

• bool SendPrivateMessage (string target, object message, bool encrypt, bool forwardAsWebhook)

Sends a private message to a single target user. Calls OnPrivateMessage on the receiving client.

Generated by Doxygen

64 Class Documentation

• bool SetOnlineStatus (int status)

Sets the user's status without changing your status-message.

• bool SetOnlineStatus (int status, object message)

Sets the user's status without changing your status-message.

• bool AddFriends (string[] friends)

Adds friends to a list on the Chat Server which will send you status updates for those.

• bool RemoveFriends (string[] friends)

Removes the provided entries from the list on the Chat Server and stops their status updates.

• string GetPrivateChannelNameByUser (string userName)

Get you the (locally used) channel name for the chat between this client and another user.

• bool TryGetChannel (string channelName, bool isPrivate, out ChatChannel channel)

Simplified access to either private or public channels by name.

• bool TryGetChannel (string channelName, out ChatChannel channel)

Simplified access to all channels by name. Checks public channels first, then private ones.

• bool TryGetPrivateChannelByUser (string userId, out ChatChannel channel)

Simplified access to private channels by target user.

• bool Subscribe (string channel, int lastMsgId=0, int messagesFromHistory=-1, ChannelCreationOptions
creationOptions=null)

Subscribe to a single channel and optionally sets its well-know channel properties in case the channel is created.

Public Attributes

• int MessageLimit

If greater than 0, new channels will limit the number of messages they cache locally.

• int PrivateChatHistoryLength = -1

Limits the number of messages from private channel histories.

• readonly Dictionary< string, ChatChannel > PublicChannels

Public channels this client is subscribed to.

• readonly Dictionary< string, ChatChannel > PrivateChannels

Private channels in which this client has exchanged messages.

• ChatPeer chatPeer = null

The Chat Peer used by this client.

Static Public Attributes

• const int DefaultMaxSubscribers = 100

Default maximum value possible for ChatChannel.MaxSubscribers when ChatChannel.PublishSubscribers is enabled

Properties

• bool EnableProtocolFallback [get, set]

Enables a fallback to another protocol in case a connect to the Name Server fails.

• string NameServerAddress [get]

The address of last connected Name Server.

• string FrontendAddress [get]

The address of the actual chat server assigned from NameServer. Public for read only.

• string ChatRegion [get, set]

Settable only before you connect! Defaults to "EU".

• ChatState State [get]

Generated by Doxygen

8.13 ChatClient Class Reference 65

Current state of the ChatClient. Also use CanChat.
• ChatDisconnectCause DisconnectedCause [get]

Disconnection cause. Check this inside IChatClientListener.OnDisconnected.
• bool CanChat [get]

Checks if this client is ready to send messages.
• string AppVersion [get]

The version of your client. A new version also creates a new "virtual app" to separate players from older client
versions.

• string AppId [get]

The AppID as assigned from the Photon Cloud.
• AuthenticationValues AuthValues [get, set]

Settable only before you connect!
• string? UserId [get]

The unique ID of a user/person, stored in AuthValues.UserId. Set it before you connect.
• bool UseBackgroundWorkerForSending [get, set]

Defines if a background thread will call SendOutgoingCommands, while your code calls Service to dispatch received
messages.

• ConnectionProtocol? TransportProtocol [get, set]

Exposes the TransportProtocol of the used PhotonPeer. Settable while not connected.
• Dictionary< ConnectionProtocol, Type > SocketImplementationConfig [get]

Defines which IPhotonSocket class to use per ConnectionProtocol.
• DebugLevel DebugOut [get, set]

Sets the level (and amount) of debug output provided by the library.

8.13.1 Detailed Description

Central class of the Photon Chat API to connect, handle channels and messages.

This class must be instantiated with a IChatClientListener instance to get the callbacks. Integrate it into your game
loop by calling Service regularly. If the target platform supports Threads/Tasks, set UseBackgroundWorkerFor←↩

Sending = true, to let the ChatClient keep the connection by sending from an independent thread.

Call Connect with an AppId that is setup as Photon Chat application. Note: Connect covers multiple messages
between this client and the servers. A short workflow will connect you to a chat server.

Each ChatClient resembles a user in chat (set in Connect). Each user automatically subscribes a channel for
incoming private messages and can message any other user privately. Before you publish messages in any non-
private channel, that channel must be subscribed.

PublicChannels is a list of subscribed channels, containing messages and senders. PrivateChannels contains all
incoming and sent private messages.

8.13.2 Constructor & Destructor Documentation

8.13.2.1 ChatClient()

ChatClient (

IChatClientListener listener,

ConnectionProtocol protocol = ConnectionProtocol.Udp)

Chat client constructor.

Generated by Doxygen

66 Class Documentation

Parameters

listener The chat listener implementation.

protocol Connection protocol to be used by this client. Default is ConnectionProtocol.Udp.

8.13.3 Member Function Documentation

8.13.3.1 AddFriends()

bool AddFriends (

string[] friends)

Adds friends to a list on the Chat Server which will send you status updates for those.

AddFriends and RemoveFriends enable clients to handle their friend list in the Photon Chat server. Having users
on your friends list gives you access to their current online status (and whatever info your client sets in it).

Each user can set an online status consisting of an integer and an arbitrary (serializable) object. The object can be
null, Hashtable, object[] or anything else Photon can serialize.

The status is published automatically to friends (anyone who set your user ID with AddFriends).

Photon flushes friends-list when a chat client disconnects, so it has to be set each time. If your community API gives
you access to online status already, you could filter and set online friends in AddFriends.

Actual friend relations are not persistent and have to be stored outside of Photon.

Parameters

friends Array of friend userIds.

Returns

If the operation could be sent.

8.13.3.2 CanChatInChannel()

bool CanChatInChannel (

string channelName)

Checks if this client is ready to publish messages inside a public channel.

Parameters

channelName The channel to do the check with.

Generated by Doxygen

8.13 ChatClient Class Reference 67

Returns

Whether or not this client is ready to publish messages inside the public channel with the specified channel←↩

Name.

8.13.3.3 Connect()

bool Connect (

string appId,

string appVersion,

AuthenticationValues authValues)

Connects this client to the Photon Chat Cloud service, which will also authenticate the user (and set a UserId).

Parameters

appId Get your Photon Chat AppId from the Dashboard.

appVersion Any version string you make up. Used to separate users and variants of your clients, which might
be incompatible.

authValues Values for authentication. You can leave this null, if you set a UserId before. If you set
authValues, they will override any UserId set before.

Returns

8.13.3.4 ConnectAndSetStatus()

bool ConnectAndSetStatus (

string appId,

string appVersion,

AuthenticationValues authValues,

int status = ChatUserStatus.Online,

object message = null)

Connects this client to the Photon Chat Cloud service, which will also authenticate the user (and set a UserId).
This also sets an online status once connected. By default it will set user status to ChatUserStatus.Online. See
SetOnlineStatus(int,object) for more information.

Parameters

appId Get your Photon Chat AppId from the Dashboard.

appVersion Any version string you make up. Used to separate users and variants of your clients, which might
be incompatible.

authValues Values for authentication. You can leave this null, if you set a UserId before. If you set
authValues, they will override any UserId set before.

status User status to set when connected. Predefined states are in class ChatUserStatus. Other values
can be used at will.

message Optional status Also sets a status-message which your friends can get.
Generated by Doxygen

68 Class Documentation

Returns

If the connection attempt could be sent at all.

8.13.3.5 Disconnect()

void Disconnect (

ChatDisconnectCause cause = ChatDisconnectCause.DisconnectByClientLogic)

Disconnects from the Chat Server by sending a "disconnect command", which prevents a timeout server-side.

8.13.3.6 GetPrivateChannelNameByUser()

string GetPrivateChannelNameByUser (

string userName)

Get you the (locally used) channel name for the chat between this client and another user.

Parameters

userName Remote user's name or UserId.

Returns

The (locally used) channel name for a private channel.

Do not subscribe to this channel. Private channels do not need to be explicitly subscribed to. Use this for debugging
purposes mainly.

8.13.3.7 PublishMessage()

bool PublishMessage (

string channelName,

object message,

bool forwardAsWebhook = false)

Sends a message to a public channel which this client subscribed to.

Before you publish to a channel, you have to subscribe it. Everyone in that channel will get the message.

Parameters

channelName Name of the channel to publish to.

message Your message (string or any serializable data).

forwardAsWebhook Optionally, public messages can be forwarded as webhooks. Configure webhooks for
your Chat app to use this.

Generated by Doxygen

8.13 ChatClient Class Reference 69

Returns

False if the client is not yet ready to send messages.

8.13.3.8 RemoveFriends()

bool RemoveFriends (

string[] friends)

Removes the provided entries from the list on the Chat Server and stops their status updates.

Photon flushes friends-list when a chat client disconnects. Unless you want to remove individual entries, you don't
have to RemoveFriends.

AddFriends and RemoveFriends enable clients to handle their friend list in the Photon Chat server. Having users
on your friends list gives you access to their current online status (and whatever info your client sets in it).

Each user can set an online status consisting of an integer and an arbitratry (serializable) object. The object can be
null, Hashtable, object[] or anything else Photon can serialize.

The status is published automatically to friends (anyone who set your user ID with AddFriends).

Photon flushes friends-list when a chat client disconnects, so it has to be set each time. If your community API gives
you access to online status already, you could filter and set online friends in AddFriends.

Actual friend relations are not persistent and have to be stored outside of Photon.

AddFriends and RemoveFriends enable clients to handle their friend list in the Photon Chat server. Having users
on your friends list gives you access to their current online status (and whatever info your client sets in it).

Each user can set an online status consisting of an integer and an arbitratry (serializable) object. The object can be
null, Hashtable, object[] or anything else Photon can serialize.

The status is published automatically to friends (anyone who set your user ID with AddFriends).

Actual friend relations are not persistent and have to be stored outside of Photon.

Parameters

friends Array of friend userIds.

Returns

If the operation could be sent.

8.13.3.9 SendAcksOnly()

void SendAcksOnly ()

Obsolete: Better use UseBackgroundWorkerForSending and Service().

Generated by Doxygen

70 Class Documentation

8.13.3.10 SendPrivateMessage() [1/2]

bool SendPrivateMessage (

string target,

object message,

bool encrypt,

bool forwardAsWebhook)

Sends a private message to a single target user. Calls OnPrivateMessage on the receiving client.

Parameters

target Username to send this message to.

message The message you want to send. Can be a simple string or anything serializable.

encrypt Optionally, private messages can be encrypted. Encryption is not end-to-end as the
server decrypts the message.

forwardAsWebhook Optionally, private messages can be forwarded as webhooks. Configure webhooks for
your Chat app to use this.

Returns

True if this clients can send the message to the server.

8.13.3.11 SendPrivateMessage() [2/2]

bool SendPrivateMessage (

string target,

object message,

bool forwardAsWebhook = false)

Sends a private message to a single target user. Calls OnPrivateMessage on the receiving client.

Parameters

target Username to send this message to.

message The message you want to send. Can be a simple string or anything serializable.

forwardAsWebhook Optionally, private messages can be forwarded as webhooks. Configure webhooks for
your Chat app to use this.

Returns

True if this clients can send the message to the server.

8.13.3.12 Service()

void Service ()

Generated by Doxygen

8.13 ChatClient Class Reference 71

Must be called regularly to keep connection between client and server alive and to process incoming messages.

This method limits the effort it does automatically using the private variable msDeltaForServiceCalls. That value is
lower for connect and multiplied by 4 when chat-server connection is ready.

8.13.3.13 SetOnlineStatus() [1/2]

bool SetOnlineStatus (

int status)

Sets the user's status without changing your status-message.

The predefined status values can be found in class ChatUserStatus. State ChatUserStatus.Invisible will make you
offline for everyone and send no message.

You can set custom values in the status integer. Aside from the pre-configured ones, all states will be considered
visible and online. Else, no one would see the custom state.

This overload does not change the set message.

Parameters

status Predefined states are in class ChatUserStatus. Other values can be used at will.

Returns

True if the operation gets called on the server.

8.13.3.14 SetOnlineStatus() [2/2]

bool SetOnlineStatus (

int status,

object message)

Sets the user's status without changing your status-message.

The predefined status values can be found in class ChatUserStatus. State ChatUserStatus.Invisible will make you
offline for everyone and send no message.

You can set custom values in the status integer. Aside from the pre-configured ones, all states will be considered
visible and online. Else, no one would see the custom state.

The message object can be anything that Photon can serialize, including (but not limited to) Hashtable, object[] and
string. This value is defined by your own conventions.

Parameters

status Predefined states are in class ChatUserStatus. Other values can be used at will.
message Also sets a status-message which your friends can get.

Generated by Doxygen

72 Class Documentation

Returns

True if the operation gets called on the server.

8.13.3.15 StopThread()

void StopThread ()

Locally shuts down the connection to the Chat Server. This resets states locally but the server will have to timeout
this peer.

8.13.3.16 Subscribe() [1/4]

bool Subscribe (

string channel,

int lastMsgId = 0,

int messagesFromHistory = -1,

ChannelCreationOptions creationOptions = null)

Subscribe to a single channel and optionally sets its well-know channel properties in case the channel is created.

Parameters

channel name of the channel to subscribe to
lastMsgId ID of the last received message from this channel when re subscribing to receive only

missed messages, default is 0

messagesFromHistory how many missed messages to receive from history, default is -1 (available history). 0
will get you no items. Positive values are capped by a server side limit.

creationOptions options to be used in case the channel to subscribe to will be created.

Returns

8.13.3.17 Subscribe() [2/4]

bool Subscribe (

string[] channels)

Sends operation to subscribe to a list of channels by name.

Parameters

channels List of channels to subscribe to. Avoid null or empty values.

Generated by Doxygen

8.13 ChatClient Class Reference 73

Returns

If the operation could be sent at all (Example: Fails if not connected to Chat Server).

8.13.3.18 Subscribe() [3/4]

bool Subscribe (

string[] channels,

int messagesFromHistory)

Sends operation to subscribe client to channels, optionally fetching a number of messages from the cache.

Subscribes channels will forward new messages to this user. Use PublishMessage to do so. The messages cache
is limited but can be useful to get into ongoing conversations, if that's needed.

Parameters

channels List of channels to subscribe to. Avoid null or empty values.

messagesFromHistory 0: no history. 1 and higher: number of messages in history. -1: all available history.

Returns

If the operation could be sent at all (Example: Fails if not connected to Chat Server).

8.13.3.19 Subscribe() [4/4]

bool Subscribe (

string[] channels,

int[] lastMsgIds)

Sends operation to subscribe to a list of channels by name and possibly retrieve messages we did not receive while
unsubscribed.

Parameters

channels List of channels to subscribe to. Avoid null or empty values.

lastMsgIds ID of last message received per channel. Useful when re subscribing to receive only messages
we missed.

Returns

If the operation could be sent at all (Example: Fails if not connected to Chat Server).

Generated by Doxygen

74 Class Documentation

8.13.3.20 TryGetChannel() [1/2]

bool TryGetChannel (

string channelName,

bool isPrivate,

out ChatChannel channel)

Simplified access to either private or public channels by name.

Parameters

channelName Name of the channel to get. For private channels, the channel-name is composed of both
user's names.

isPrivate Define if you expect a private or public channel.

channel Out parameter gives you the found channel, if any.

Returns

True if the channel was found.

Public channels exist only when subscribed to them. Private channels exist only when at least one message is
exchanged with the target user privately.

8.13.3.21 TryGetChannel() [2/2]

bool TryGetChannel (

string channelName,

out ChatChannel channel)

Simplified access to all channels by name. Checks public channels first, then private ones.

Parameters

channelName Name of the channel to get.

channel Out parameter gives you the found channel, if any.

Returns

True if the channel was found.

Public channels exist only when subscribed to them. Private channels exist only when at least one message is
exchanged with the target user privately.

8.13.3.22 TryGetPrivateChannelByUser()

bool TryGetPrivateChannelByUser (

string userId,

out ChatChannel channel)

Simplified access to private channels by target user.

Generated by Doxygen

8.13 ChatClient Class Reference 75

Parameters

userId UserId of the target user in the private channel.

channel Out parameter gives you the found channel, if any.

Returns

True if the channel was found.

8.13.3.23 Unsubscribe()

bool Unsubscribe (

string[] channels)

Unsubscribes from a list of channels, which stops getting messages from those.

The client will remove these channels from the PublicChannels dictionary once the server sent a response to this
request.

The request will be sent to the server and IChatClientListener.OnUnsubscribed gets called when the server actually
removed the channel subscriptions.

Unsubscribe will fail if you include null or empty channel names.

Parameters

channels Names of channels to unsubscribe.

Returns

False, if not connected to a chat server.

8.13.4 Member Data Documentation

8.13.4.1 chatPeer

ChatPeer chatPeer = null

The Chat Peer used by this client.

Generated by Doxygen

76 Class Documentation

8.13.4.2 DefaultMaxSubscribers

const int DefaultMaxSubscribers = 100 [static]

Default maximum value possible for ChatChannel.MaxSubscribers when ChatChannel.PublishSubscribers is en-
abled

8.13.4.3 MessageLimit

int MessageLimit

If greater than 0, new channels will limit the number of messages they cache locally.

This can be useful to limit the amount of memory used by chats. You can set a MessageLimit per channel but this
value gets applied to new ones.

Note: Changing this value, does not affect ChatChannels that are already in use!

8.13.4.4 PrivateChannels

readonly Dictionary<string, ChatChannel> PrivateChannels

Private channels in which this client has exchanged messages.

8.13.4.5 PrivateChatHistoryLength

int PrivateChatHistoryLength = -1

Limits the number of messages from private channel histories.

This is applied to all private channels on reconnect, as there is no explicit re-joining private channels.
Default is -1, which gets available messages up to a maximum set by the server.
A value of 0 gets you zero messages.
The server's limit of messages may be lower. If so, the server's value will overrule this.

8.13.4.6 PublicChannels

readonly Dictionary<string, ChatChannel> PublicChannels

Public channels this client is subscribed to.

8.13.5 Property Documentation

Generated by Doxygen

8.13 ChatClient Class Reference 77

8.13.5.1 AppId

string AppId [get]

The AppID as assigned from the Photon Cloud.

8.13.5.2 AppVersion

string AppVersion [get]

The version of your client. A new version also creates a new "virtual app" to separate players from older client
versions.

8.13.5.3 AuthValues

AuthenticationValues AuthValues [get], [set]

Settable only before you connect!

8.13.5.4 CanChat

bool CanChat [get]

Checks if this client is ready to send messages.

8.13.5.5 ChatRegion

string ChatRegion [get], [set]

Settable only before you connect! Defaults to "EU".

8.13.5.6 DebugOut

DebugLevel DebugOut [get], [set]

Sets the level (and amount) of debug output provided by the library.

This affects the callbacks to IChatClientListener.DebugReturn. Default Level: Error.

Generated by Doxygen

78 Class Documentation

8.13.5.7 DisconnectedCause

ChatDisconnectCause DisconnectedCause [get]

Disconnection cause. Check this inside IChatClientListener.OnDisconnected.

8.13.5.8 EnableProtocolFallback

bool EnableProtocolFallback [get], [set]

Enables a fallback to another protocol in case a connect to the Name Server fails.

When connecting to the Name Server fails for a first time, the client will select an alternative network protocol and
re-try to connect.

The fallback will use the default Name Server port as defined by ProtocolToNameServerPort.

The fallback for TCP is UDP. All other protocols fallback to TCP.

8.13.5.9 FrontendAddress

string FrontendAddress [get]

The address of the actual chat server assigned from NameServer. Public for read only.

8.13.5.10 NameServerAddress

string NameServerAddress [get]

The address of last connected Name Server.

8.13.5.11 SocketImplementationConfig

Dictionary<ConnectionProtocol, Type> SocketImplementationConfig [get]

Defines which IPhotonSocket class to use per ConnectionProtocol.

Several platforms have special Socket implementations and slightly different APIs. To accomodate this, switching
the socket implementation for a network protocol was made available. By default, UDP and TCP have socket
implementations assigned.

You only need to set the SocketImplementationConfig once, after creating a PhotonPeer and before connecting. If
you switch the TransportProtocol, the correct implementation is being used.

Generated by Doxygen

8.14 ChatEventCode Class Reference 79

8.13.5.12 State

ChatState State [get]

Current state of the ChatClient. Also use CanChat.

8.13.5.13 TransportProtocol

ConnectionProtocol? TransportProtocol [get], [set]

Exposes the TransportProtocol of the used PhotonPeer. Settable while not connected.

8.13.5.14 UseBackgroundWorkerForSending

bool UseBackgroundWorkerForSending [get], [set]

Defines if a background thread will call SendOutgoingCommands, while your code calls Service to dispatch received
messages.

The benefit of using a background thread to call SendOutgoingCommands is this:

Even if your game logic is being paused, the background thread will keep the connection to the server up. On a
lower level, acknowledgements and pings will prevent a server-side timeout while (e.g.) Unity loads assets.

Your game logic still has to call Service regularly, or else incoming messages are not dispatched. As this typically
triggers UI updates, it's easier to call Service from the main/UI thread.

8.13.5.15 UserId

string? UserId [get]

The unique ID of a user/person, stored in AuthValues.UserId. Set it before you connect.

This value wraps AuthValues.UserId. It's not a nickname and we assume users with the same userID are the same
person.

8.14 ChatEventCode Class Reference

Wraps up internally used constants in Photon Chat events. You don't have to use them directly usually.

Generated by Doxygen

80 Class Documentation

Static Public Attributes

• const byte ChatMessages = 0

(0) Event code for messages published in public channels.

• const byte Users = 1

(1) Not Used.

• const byte PrivateMessage = 2

(2) Event code for messages published in private channels

• const byte FriendsList = 3

(3) Not Used.

• const byte StatusUpdate = 4

(4) Event code for status updates.

• const byte Subscribe = 5

(5) Event code for subscription acks.

• const byte Unsubscribe = 6

(6) Event code for unsubscribe acks.

• const byte PropertiesChanged = 7

(7) Event code for properties update.

• const byte UserSubscribed = 8

(8) Event code for new user subscription to a channel where ChatChannel.PublishSubscribers is enabled.

• const byte UserUnsubscribed = 9

(9) Event code for when user unsubscribes from a channel where ChatChannel.PublishSubscribers is enabled.

• const byte ErrorInfo = 10

(10) Event code for when the server sends an error to the client.

8.14.1 Detailed Description

Wraps up internally used constants in Photon Chat events. You don't have to use them directly usually.

8.14.2 Member Data Documentation

8.14.2.1 ChatMessages

const byte ChatMessages = 0 [static]

(0) Event code for messages published in public channels.

8.14.2.2 ErrorInfo

const byte ErrorInfo = 10 [static]

(10) Event code for when the server sends an error to the client.

This is currently only used by Chat WebHooks.

Generated by Doxygen

8.14 ChatEventCode Class Reference 81

8.14.2.3 FriendsList

const byte FriendsList = 3 [static]

(3) Not Used.

8.14.2.4 PrivateMessage

const byte PrivateMessage = 2 [static]

(2) Event code for messages published in private channels

8.14.2.5 PropertiesChanged

const byte PropertiesChanged = 7 [static]

(7) Event code for properties update.

8.14.2.6 StatusUpdate

const byte StatusUpdate = 4 [static]

(4) Event code for status updates.

8.14.2.7 Subscribe

const byte Subscribe = 5 [static]

(5) Event code for subscription acks.

8.14.2.8 Unsubscribe

const byte Unsubscribe = 6 [static]

(6) Event code for unsubscribe acks.

Generated by Doxygen

82 Class Documentation

8.14.2.9 Users

const byte Users = 1 [static]

(1) Not Used.

8.14.2.10 UserSubscribed

const byte UserSubscribed = 8 [static]

(8) Event code for new user subscription to a channel where ChatChannel.PublishSubscribers is enabled.

8.14.2.11 UserUnsubscribed

const byte UserUnsubscribed = 9 [static]

(9) Event code for when user unsubscribes from a channel where ChatChannel.PublishSubscribers is enabled.

8.15 ChatOperationCode Class Reference

Wraps up codes for operations used internally in Photon Chat. You don't have to use them directly usually.

Static Public Attributes

• const byte Authenticate = 230

(230) Operation Authenticate.

• const byte Subscribe = 0

(0) Operation to subscribe to chat channels.

• const byte Unsubscribe = 1

(1) Operation to unsubscribe from chat channels.

• const byte Publish = 2

(2) Operation to publish a message in a chat channel.

• const byte SendPrivate = 3

(3) Operation to send a private message to some other user.

• const byte ChannelHistory = 4

(4) Not used yet.

• const byte UpdateStatus = 5

(5) Set your (client's) status.

• const byte AddFriends = 6

(6) Add friends the list of friends that should update you of their status.

• const byte RemoveFriends = 7

(7) Remove friends from list of friends that should update you of their status.

• const byte SetProperties = 8

(8) Operation to set properties of public chat channel or users in public chat channels.

Generated by Doxygen

8.15 ChatOperationCode Class Reference 83

8.15.1 Detailed Description

Wraps up codes for operations used internally in Photon Chat. You don't have to use them directly usually.

8.15.2 Member Data Documentation

8.15.2.1 AddFriends

const byte AddFriends = 6 [static]

(6) Add friends the list of friends that should update you of their status.

8.15.2.2 Authenticate

const byte Authenticate = 230 [static]

(230) Operation Authenticate.

8.15.2.3 ChannelHistory

const byte ChannelHistory = 4 [static]

(4) Not used yet.

8.15.2.4 Publish

const byte Publish = 2 [static]

(2) Operation to publish a message in a chat channel.

8.15.2.5 RemoveFriends

const byte RemoveFriends = 7 [static]

(7) Remove friends from list of friends that should update you of their status.

Generated by Doxygen

84 Class Documentation

8.15.2.6 SendPrivate

const byte SendPrivate = 3 [static]

(3) Operation to send a private message to some other user.

8.15.2.7 SetProperties

const byte SetProperties = 8 [static]

(8) Operation to set properties of public chat channel or users in public chat channels.

8.15.2.8 Subscribe

const byte Subscribe = 0 [static]

(0) Operation to subscribe to chat channels.

8.15.2.9 Unsubscribe

const byte Unsubscribe = 1 [static]

(1) Operation to unsubscribe from chat channels.

8.15.2.10 UpdateStatus

const byte UpdateStatus = 5 [static]

(5) Set your (client's) status.

8.16 ChatParameterCode Class Reference

Wraps up codes for parameters (in operations and events) used internally in Photon Chat. You don't have to use
them directly usually.

Generated by Doxygen

8.16 ChatParameterCode Class Reference 85

Static Public Attributes

• const byte Channels = 0

(0) Array of chat channels.

• const byte Channel = 1

(1) Name of a single chat channel.

• const byte Messages = 2

(2) Array of chat messages.

• const byte Message = 3

(3) A single chat message.

• const byte Senders = 4

(4) Array of names of the users who sent the array of chat messages.

• const byte Sender = 5

(5) Name of a the user who sent a chat message.

• const byte ChannelUserCount = 6

(6) Not used.

• const byte UserId = 225

(225) Name of user to send a (private) message to.

• const byte MsgId = 8

(8) Id of a message.

• const byte MsgIds = 9

(9) Not used.

• const byte Secret = 221

(221) Secret token to identify an authorized user.

• const byte SubscribeResults = 15

(15) Subscribe operation result parameter. A bool[] with result per channel.

• const byte Status = 10

(10) Status

• const byte Friends = 11

(11) Friends

• const byte SkipMessage = 12

(12) SkipMessage is used in SetOnlineStatus and if true, the message is not being broadcast.

• const byte HistoryLength = 14

(14) Number of message to fetch from history. 0: no history. 1 and higher: number of messages in history. -1: all
history.

• const byte DebugMessage = 17
• const byte WebFlags = 21

(21) WebFlags object for changing behaviour of webhooks from client.

• const byte Properties = 22

(22) WellKnown or custom properties of channel or user.

• const byte ChannelSubscribers = 23

(23) Array of UserIds of users already subscribed to a channel.

• const byte DebugData = 24

(24) Optional data sent in ErrorInfo event from Chat WebHooks.

• const byte ExpectedValues = 25

(25) Code for values to be used for "Check And Swap" (CAS) when changing properties.

• const byte Broadcast = 26

(26) Code for broadcast parameter of ChatOperationCode.SetProperties method.

• const byte UserProperties = 28

WellKnown and custom user properties.

• const byte UniqueRoomId = 29

Generated unique reusable room id

Generated by Doxygen

86 Class Documentation

8.16.1 Detailed Description

Wraps up codes for parameters (in operations and events) used internally in Photon Chat. You don't have to use
them directly usually.

8.16.2 Member Data Documentation

8.16.2.1 Broadcast

const byte Broadcast = 26 [static]

(26) Code for broadcast parameter of ChatOperationCode.SetProperties method.

8.16.2.2 Channel

const byte Channel = 1 [static]

(1) Name of a single chat channel.

8.16.2.3 Channels

const byte Channels = 0 [static]

(0) Array of chat channels.

8.16.2.4 ChannelSubscribers

const byte ChannelSubscribers = 23 [static]

(23) Array of UserIds of users already subscribed to a channel.

Used in Subscribe event when PublishSubscribers is enabled. Does not include local user who just subscribed.
Maximum length is (ChatChannel.MaxSubscribers - 1).

8.16.2.5 ChannelUserCount

const byte ChannelUserCount = 6 [static]

(6) Not used.

Generated by Doxygen

8.16 ChatParameterCode Class Reference 87

8.16.2.6 DebugData

const byte DebugData = 24 [static]

(24) Optional data sent in ErrorInfo event from Chat WebHooks.

8.16.2.7 ExpectedValues

const byte ExpectedValues = 25 [static]

(25) Code for values to be used for "Check And Swap" (CAS) when changing properties.

8.16.2.8 Friends

const byte Friends = 11 [static]

(11) Friends

8.16.2.9 HistoryLength

const byte HistoryLength = 14 [static]

(14) Number of message to fetch from history. 0: no history. 1 and higher: number of messages in history. -1: all
history.

8.16.2.10 Message

const byte Message = 3 [static]

(3) A single chat message.

8.16.2.11 Messages

const byte Messages = 2 [static]

(2) Array of chat messages.

Generated by Doxygen

88 Class Documentation

8.16.2.12 MsgId

const byte MsgId = 8 [static]

(8) Id of a message.

8.16.2.13 MsgIds

const byte MsgIds = 9 [static]

(9) Not used.

8.16.2.14 Properties

const byte Properties = 22 [static]

(22) WellKnown or custom properties of channel or user.

In event ChatEventCode.Subscribe it's always channel properties, in event ChatEventCode.UserSubscribed it's al-
ways user properties, in event ChatEventCode.PropertiesChanged it's channel properties unless UserId parameter
value is not null

8.16.2.15 Secret

const byte Secret = 221 [static]

(221) Secret token to identify an authorized user.

The code is used in LoadBalancing and copied over here.

8.16.2.16 Sender

const byte Sender = 5 [static]

(5) Name of a the user who sent a chat message.

8.16.2.17 Senders

const byte Senders = 4 [static]

(4) Array of names of the users who sent the array of chat messages.

Generated by Doxygen

8.16 ChatParameterCode Class Reference 89

8.16.2.18 SkipMessage

const byte SkipMessage = 12 [static]

(12) SkipMessage is used in SetOnlineStatus and if true, the message is not being broadcast.

8.16.2.19 Status

const byte Status = 10 [static]

(10) Status

8.16.2.20 SubscribeResults

const byte SubscribeResults = 15 [static]

(15) Subscribe operation result parameter. A bool[] with result per channel.

8.16.2.21 UniqueRoomId

const byte UniqueRoomId = 29 [static]

Generated unique reusable room id

8.16.2.22 UserId

const byte UserId = 225 [static]

(225) Name of user to send a (private) message to.

The code is used in LoadBalancing and copied over here.

8.16.2.23 UserProperties

const byte UserProperties = 28 [static]

WellKnown and custom user properties.

Used only in event ChatEventCode.Subscribe

Generated by Doxygen

90 Class Documentation

8.16.2.24 WebFlags

const byte WebFlags = 21 [static]

(21) WebFlags object for changing behaviour of webhooks from client.

8.17 ChatPeer Class Reference

Provides basic operations of the Photon Chat server. This internal class is used by public ChatClient.

Inherits PhotonPeer.

Public Member Functions

• ChatPeer (IPhotonPeerListener listener, ConnectionProtocol protocol)

Chat Peer constructor.
• bool Connect ()

Connects to NameServer.
• bool AuthenticateOnNameServer (string appId, string appVersion, string region, AuthenticationValues auth←↩

Values)

Authenticates on NameServer.

Public Attributes

• string NameServerHost = "ns.photonengine.io"

Name Server Host Name for Photon Cloud. Without port and without any prefix.
• ushort NameServerPortOverride

If not zero, this is used for the name server port on connect. Independent of protocol (so this better matches). Set by
ChatClient.ConnectUsingSettings.

Properties

• string NameServerAddress [get]

Name Server Address for Photon Cloud (based on current protocol). You can use the default values and usually won't
have to set this value.

8.17.1 Detailed Description

Provides basic operations of the Photon Chat server. This internal class is used by public ChatClient.

8.17.2 Constructor & Destructor Documentation

8.17.2.1 ChatPeer()

ChatPeer (

IPhotonPeerListener listener,

ConnectionProtocol protocol)

Chat Peer constructor.

Generated by Doxygen

8.17 ChatPeer Class Reference 91

Parameters

listener Chat listener implementation.

protocol Protocol to be used by the peer.

8.17.3 Member Function Documentation

8.17.3.1 AuthenticateOnNameServer()

bool AuthenticateOnNameServer (

string appId,

string appVersion,

string region,

AuthenticationValues authValues)

Authenticates on NameServer.

Returns

If the authentication operation request could be sent.

8.17.3.2 Connect()

bool Connect ()

Connects to NameServer.

Returns

If the connection attempt could be sent.

8.17.4 Member Data Documentation

8.17.4.1 NameServerHost

string NameServerHost = "ns.photonengine.io"

Name Server Host Name for Photon Cloud. Without port and without any prefix.

Generated by Doxygen

92 Class Documentation

8.17.4.2 NameServerPortOverride

ushort NameServerPortOverride

If not zero, this is used for the name server port on connect. Independent of protocol (so this better matches). Set
by ChatClient.ConnectUsingSettings.

This is reset when the protocol fallback is used.

8.17.5 Property Documentation

8.17.5.1 NameServerAddress

string NameServerAddress [get]

Name Server Address for Photon Cloud (based on current protocol). You can use the default values and usually
won't have to set this value.

8.18 ChatUserStatus Class Reference

Contains commonly used status values for SetOnlineStatus. You can define your own.

Static Public Attributes

• const int Offline = 0

(0) Offline.

• const int Invisible = 1

(1) Be invisible to everyone. Sends no message.

• const int Online = 2

(2) Online and available.

• const int Away = 3

(3) Online but not available.

• const int DND = 4

(4) Do not disturb.

• const int LFG = 5

(5) Looking For Game/Group. Could be used when you want to be invited or do matchmaking.

• const int Playing = 6

(6) Could be used when in a room, playing.

8.18.1 Detailed Description

Contains commonly used status values for SetOnlineStatus. You can define your own.

While "online" (value 2 and up), the status message will be sent to anyone who has you on his friend list.

Define custom online status values as you like with these rules: 0: Means "offline". It will be used when you are not
connected. In this status, there is no status message. 1: Means "invisible" and is sent to friends as "offline". They
see status 0, no message but you can chat. 2: And any higher value will be treated as "online". Status can be set.

Generated by Doxygen

8.18 ChatUserStatus Class Reference 93

8.18.2 Member Data Documentation

8.18.2.1 Away

const int Away = 3 [static]

(3) Online but not available.

8.18.2.2 DND

const int DND = 4 [static]

(4) Do not disturb.

8.18.2.3 Invisible

const int Invisible = 1 [static]

(1) Be invisible to everyone. Sends no message.

8.18.2.4 LFG

const int LFG = 5 [static]

(5) Looking For Game/Group. Could be used when you want to be invited or do matchmaking.

8.18.2.5 Offline

const int Offline = 0 [static]

(0) Offline.

Generated by Doxygen

94 Class Documentation

8.18.2.6 Online

const int Online = 2 [static]

(2) Online and available.

8.18.2.7 Playing

const int Playing = 6 [static]

(6) Could be used when in a room, playing.

8.19 ConnectAndJoinRandom Class Reference

Simple component to call ConnectUsingSettings and to get into a PUN room easily.

Inherits MonoBehaviourPunCallbacks.

Public Member Functions

• void Start ()
• void ConnectNow ()
• override void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

• override void OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.

• override void OnJoinRandomFailed (short returnCode, string message)

Called when a previous OpJoinRandom call failed on the server.

• override void OnDisconnected (DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or intentional

• override void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

Public Attributes

• bool AutoConnect = true

Connect automatically? If false you can set this to true later on or call ConnectUsingSettings in your own scripts.

• byte Version = 1

Used as PhotonNetwork.GameVersion.

• byte MaxPlayers = 4

Max number of players allowed in room. Once full, a new room will be created by the next connection attemping to
join.

• int playerTTL = -1

Generated by Doxygen

8.19 ConnectAndJoinRandom Class Reference 95

Additional Inherited Members

8.19.1 Detailed Description

Simple component to call ConnectUsingSettings and to get into a PUN room easily.

A custom inspector provides a button to connect in PlayMode, should AutoConnect be false.

8.19.2 Member Function Documentation

8.19.2.1 OnConnectedToMaster()

override void OnConnectedToMaster () [virtual]

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

The list of available rooms won't become available unless you join a lobby via LoadBalancingClient.OpJoinLobby.
You can join rooms and create them even without being in a lobby. The default lobby is used in that case.

Reimplemented from MonoBehaviourPunCallbacks.

8.19.2.2 OnDisconnected()

override void OnDisconnected (

DisconnectCause cause) [virtual]

Called after disconnecting from the Photon server. It could be a failure or intentional

The reason for this disconnect is provided as DisconnectCause.

Reimplemented from MonoBehaviourPunCallbacks.

8.19.2.3 OnJoinedLobby()

override void OnJoinedLobby () [virtual]

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.

While in the lobby, the roomlist is automatically updated in fixed intervals (which you can't modify in the public cloud).
The room list gets available via OnRoomListUpdate.

Reimplemented from MonoBehaviourPunCallbacks.

Generated by Doxygen

96 Class Documentation

8.19.2.4 OnJoinedRoom()

override void OnJoinedRoom () [virtual]

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Reimplemented from MonoBehaviourPunCallbacks.

8.19.2.5 OnJoinRandomFailed()

override void OnJoinRandomFailed (

short returnCode,

string message) [virtual]

Called when a previous OpJoinRandom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

When using multiple lobbies (via OpJoinLobby or a TypedLobby parameter), another lobby might have more/fitting
rooms.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Reimplemented from MonoBehaviourPunCallbacks.

8.19.3 Member Data Documentation

8.19.3.1 AutoConnect

bool AutoConnect = true

Connect automatically? If false you can set this to true later on or call ConnectUsingSettings in your own scripts.

Generated by Doxygen

8.20 ConnectionCallbacksContainer Class Reference 97

8.19.3.2 MaxPlayers

byte MaxPlayers = 4

Max number of players allowed in room. Once full, a new room will be created by the next connection attemping to
join.

8.19.3.3 Version

byte Version = 1

Used as PhotonNetwork.GameVersion.

8.20 ConnectionCallbacksContainer Class Reference

Container type for callbacks defined by IConnectionCallbacks. See LoadBalancingCallbackTargets.

Inherits List< IConnectionCallbacks >, and IConnectionCallbacks.

Public Member Functions

• ConnectionCallbacksContainer (LoadBalancingClient client)
• void OnConnected ()

Called to signal that the "low level connection" got established but before the client can call operation on the server.

• void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

• void OnRegionListReceived (RegionHandler regionHandler)

Called when the Name Server provided a list of regions for your title.

• void OnDisconnected (DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or an explicit disconnect call

• void OnCustomAuthenticationResponse (Dictionary< string, object > data)

Called when your Custom Authentication service responds with additional data.

• void OnCustomAuthenticationFailed (string debugMessage)

Called when the custom authentication failed. Followed by disconnect!

8.20.1 Detailed Description

Container type for callbacks defined by IConnectionCallbacks. See LoadBalancingCallbackTargets.

While the interfaces of callbacks wrap up the methods that will be called, the container classes implement a simple
way to call a method on all registered objects.

8.20.2 Member Function Documentation

Generated by Doxygen

98 Class Documentation

8.20.2.1 OnConnected()

void OnConnected ()

Called to signal that the "low level connection" got established but before the client can call operation on the server.

After the (low level transport) connection is established, the client will automatically send the Authentication opera-
tion, which needs to get a response before the client can call other operations.

Your logic should wait for either: OnRegionListReceived or OnConnectedToMaster.

This callback is useful to detect if the server can be reached at all (technically). Most often, it's enough to implement
OnDisconnected(DisconnectCause cause) and check for the cause.

This is not called for transitions from the masterserver to game servers.

Implements IConnectionCallbacks.

8.20.2.2 OnConnectedToMaster()

void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

The list of available rooms won't become available unless you join a lobby via LoadBalancingClient.OpJoinLobby.
You can join rooms and create them even without being in a lobby. The default lobby is used in that case.

Implements IConnectionCallbacks.

8.20.2.3 OnCustomAuthenticationFailed()

void OnCustomAuthenticationFailed (

string debugMessage)

Called when the custom authentication failed. Followed by disconnect!

Custom Authentication can fail due to user-input, bad tokens/secrets. If authentication is successful, this method is
not called. Implement OnJoinedLobby() or OnConnectedToMaster() (as usual).

During development of a game, it might also fail due to wrong configuration on the server side. In those cases,
logging the debugMessage is very important.

Unless you setup a custom authentication service for your app (in the Dashboard), this won't be called!

Parameters

debugMessage Contains a debug message why authentication failed. This has to be fixed during development.

Generated by Doxygen

8.20 ConnectionCallbacksContainer Class Reference 99

Implements IConnectionCallbacks.

8.20.2.4 OnCustomAuthenticationResponse()

void OnCustomAuthenticationResponse (

Dictionary< string, object > data)

Called when your Custom Authentication service responds with additional data.

Custom Authentication services can include some custom data in their response. When present, that data is made
available in this callback as Dictionary. While the keys of your data have to be strings, the values can be either string
or a number (in Json). You need to make extra sure, that the value type is the one you expect. Numbers become
(currently) int64.

Example: void OnCustomAuthenticationResponse(Dictionary<string, object> data) { ... }

https://doc.photonengine.com/en-us/realtime/current/reference/custom-authentication

Implements IConnectionCallbacks.

8.20.2.5 OnDisconnected()

void OnDisconnected (

DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or an explicit disconnect call

The reason for this disconnect is provided as DisconnectCause.

Implements IConnectionCallbacks.

8.20.2.6 OnRegionListReceived()

void OnRegionListReceived (

RegionHandler regionHandler)

Called when the Name Server provided a list of regions for your title.

Check the RegionHandler class description, to make use of the provided values.

Parameters

regionHandler The currently used RegionHandler.

Implements IConnectionCallbacks.

Generated by Doxygen

100 Class Documentation

8.21 ConnectionHandler Class Reference

Inherited by PhotonHandler.

Public Member Functions

• void StartFallbackSendAckThread ()
• void StopFallbackSendAckThread ()
• bool RealtimeFallbackThread ()

A thread which runs independent from the Update() calls. Keeps connections online while loading or in background.
See KeepAliveInBackground.

Public Attributes

• bool DisconnectAfterKeepAlive = false

Option to let the fallback thread call Disconnect after the KeepAliveInBackground time. Default: false.

• int KeepAliveInBackground = 60000

Defines for how long the Fallback Thread should keep the connection, before it may time out as usual.

• bool ApplyDontDestroyOnLoad = true

Keeps the ConnectionHandler, even if a new scene gets loaded.

Static Public Attributes

• static bool AppQuits

Indicates that the app is closing. Set in OnApplicationQuit().

Properties

• LoadBalancingClient Client [get, set]

Photon client to log information and statistics from.

• int CountSendAcksOnly [get]

Counts how often the Fallback Thread called SendAcksOnly, which is purely of interest to monitor if the game logic
called SendOutgoingCommands as intended.

• bool FallbackThreadRunning [get]

True if a fallback thread is running. Will call the client's SendAcksOnly() method to keep the connection up.

8.21.1 Member Function Documentation

8.21.1.1 RealtimeFallbackThread()

bool RealtimeFallbackThread ()

A thread which runs independent from the Update() calls. Keeps connections online while loading or in background.
See KeepAliveInBackground.

Generated by Doxygen

8.21 ConnectionHandler Class Reference 101

8.21.2 Member Data Documentation

8.21.2.1 ApplyDontDestroyOnLoad

bool ApplyDontDestroyOnLoad = true

Keeps the ConnectionHandler, even if a new scene gets loaded.

8.21.2.2 AppQuits

bool AppQuits [static]

Indicates that the app is closing. Set in OnApplicationQuit().

8.21.2.3 DisconnectAfterKeepAlive

bool DisconnectAfterKeepAlive = false

Option to let the fallback thread call Disconnect after the KeepAliveInBackground time. Default: false.

If set to true, the thread will disconnect the client regularly, should the client not call SendOutgoingCommands /
Service. This may happen due to an app being in background (and not getting a lot of CPU time) or when loading
assets.

If false, a regular timeout time will have to pass (on top) to time out the client.

8.21.2.4 KeepAliveInBackground

int KeepAliveInBackground = 60000

Defines for how long the Fallback Thread should keep the connection, before it may time out as usual.

We want to the Client to keep it's connection when an app is in the background (and doesn't call Update / Service
Clients should not keep their connection indefinitely in the background, so after some milliseconds, the Fallback
Thread should stop keeping it up.

8.21.3 Property Documentation

Generated by Doxygen

102 Class Documentation

8.21.3.1 Client

LoadBalancingClient Client [get], [set]

Photon client to log information and statistics from.

8.21.3.2 CountSendAcksOnly

int CountSendAcksOnly [get]

Counts how often the Fallback Thread called SendAcksOnly, which is purely of interest to monitor if the game logic
called SendOutgoingCommands as intended.

8.21.3.3 FallbackThreadRunning

bool FallbackThreadRunning [get]

True if a fallback thread is running. Will call the client's SendAcksOnly() method to keep the connection up.

8.22 CountdownTimer Class Reference

This is a basic, network-synced CountdownTimer based on properties.

Inherits MonoBehaviourPunCallbacks.

Public Member Functions

• delegate void CountdownTimerHasExpired ()

OnCountdownTimerHasExpired delegate.

• void Start ()
• override void OnEnable ()
• override void OnDisable ()
• void Update ()
• override void OnRoomPropertiesUpdate (Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

Static Public Member Functions

• static bool TryGetStartTime (out int startTimestamp)
• static void SetStartTime ()

Generated by Doxygen

8.22 CountdownTimer Class Reference 103

Public Attributes

• float Countdown = 5.0f
• Text Text

Static Public Attributes

• const string CountdownStartTime = "StartTime"

Events

• static CountdownTimerHasExpired OnCountdownTimerHasExpired

Called when the timer has expired.

Additional Inherited Members

8.22.1 Detailed Description

This is a basic, network-synced CountdownTimer based on properties.

In order to start the timer, the MasterClient can call SetStartTime() to set the timestamp for the start. The property
'StartTime' then contains the server timestamp when the timer has been started.

In order to subscribe to the CountdownTimerHasExpired event you can call CountdownTimer.OnCountdownTimerHasExpired
+= OnCountdownTimerIsExpired; from Unity's OnEnable function for example. For unsubscribing simply call
CountdownTimer.OnCountdownTimerHasExpired -= OnCountdownTimerIsExpired;.

You can do this from Unity's OnEnable and OnDisable functions.

8.22.2 Member Function Documentation

8.22.2.1 CountdownTimerHasExpired()

delegate void CountdownTimerHasExpired ()

OnCountdownTimerHasExpired delegate.

8.22.2.2 OnRoomPropertiesUpdate()

override void OnRoomPropertiesUpdate (

Hashtable propertiesThatChanged) [virtual]

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

Since v1.25 this method has one parameter: Hashtable propertiesThatChanged.
Changing properties must be done by Room.SetCustomProperties, which causes this callback locally, too.

Generated by Doxygen

104 Class Documentation

Parameters

propertiesThatChanged

Reimplemented from MonoBehaviourPunCallbacks.

8.22.3 Event Documentation

8.22.3.1 OnCountdownTimerHasExpired

CountdownTimerHasExpired OnCountdownTimerHasExpired [static]

Called when the timer has expired.

8.23 CullArea Class Reference

Represents the cull area used for network culling.

Inherits MonoBehaviour.

Public Member Functions

• void OnDrawGizmos ()

Creates the cell hierarchy in editor and draws the cell view.

• List< byte > GetActiveCells (Vector3 position)

Gets a list of all cell IDs the player is currently inside or nearby.

Public Attributes

• readonly byte FIRST_GROUP_ID = 1

This represents the first ID which is assigned to the first created cell. If you already have some interest groups
blocking this first ID, fell free to change it. However increasing the first group ID decreases the maximum amount of
allowed cells. Allowed values are in range from 1 to 250.

• readonly int[] SUBDIVISION_FIRST_LEVEL_ORDER = new int[4] { 0, 1, 1, 1 }

This represents the order in which updates are sent. The number represents the subdivision of the cell hierarchy:

• readonly int[] SUBDIVISION_SECOND_LEVEL_ORDER = new int[8] { 0, 2, 1, 2, 0, 2, 1, 2 }

This represents the order in which updates are sent. The number represents the subdivision of the cell hierarchy:

• readonly int[] SUBDIVISION_THIRD_LEVEL_ORDER = new int[12] { 0, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 }

This represents the order in which updates are sent. The number represents the subdivision of the cell hierarchy:

• Vector2 Center
• Vector2 Size = new Vector2(25.0f, 25.0f)
• Vector2[] Subdivisions = new Vector2[MAX_NUMBER_OF_SUBDIVISIONS]
• int NumberOfSubdivisions
• bool YIsUpAxis = false
• bool RecreateCellHierarchy = false

Generated by Doxygen

8.23 CullArea Class Reference 105

Static Public Attributes

• const int MAX_NUMBER_OF_SUBDIVISIONS = 3

Properties

• int CellCount [get]
• CellTree CellTree [get]
• Dictionary< int, GameObject > Map [get]

8.23.1 Detailed Description

Represents the cull area used for network culling.

8.23.2 Member Function Documentation

8.23.2.1 GetActiveCells()

List<byte> GetActiveCells (

Vector3 position)

Gets a list of all cell IDs the player is currently inside or nearby.

Parameters

position The current position of the player.

Returns

A list containing all cell IDs the player is currently inside or nearby.

8.23.2.2 OnDrawGizmos()

void OnDrawGizmos ()

Creates the cell hierarchy in editor and draws the cell view.

8.23.3 Member Data Documentation

Generated by Doxygen

106 Class Documentation

8.23.3.1 FIRST_GROUP_ID

readonly byte FIRST_GROUP_ID = 1

This represents the first ID which is assigned to the first created cell. If you already have some interest groups
blocking this first ID, fell free to change it. However increasing the first group ID decreases the maximum amount of
allowed cells. Allowed values are in range from 1 to 250.

8.23.3.2 SUBDIVISION_FIRST_LEVEL_ORDER

readonly int [] SUBDIVISION_FIRST_LEVEL_ORDER = new int[4] { 0, 1, 1, 1 }

This represents the order in which updates are sent. The number represents the subdivision of the cell hierarchy:

• 0: message is sent to all players

• 1: message is sent to players who are interested in the matching cell of the first subdivision If there is only
one subdivision we are sending one update to all players before sending three consequent updates only to
players who are in the same cell or interested in updates of the current cell.

8.23.3.3 SUBDIVISION_SECOND_LEVEL_ORDER

readonly int [] SUBDIVISION_SECOND_LEVEL_ORDER = new int[8] { 0, 2, 1, 2, 0, 2, 1, 2 }

This represents the order in which updates are sent. The number represents the subdivision of the cell hierarchy:

• 0: message is sent to all players

• 1: message is sent to players who are interested in the matching cell of the first subdivision

• 2: message is sent to players who are interested in the matching cell of the second subdivision If there are
two subdivisions we are sending every second update only to players who are in the same cell or interested
in updates of the current cell.

8.23.3.4 SUBDIVISION_THIRD_LEVEL_ORDER

readonly int [] SUBDIVISION_THIRD_LEVEL_ORDER = new int[12] { 0, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2,

3 }

This represents the order in which updates are sent. The number represents the subdivision of the cell hierarchy:

• 0: message is sent to all players

• 1: message is sent to players who are interested in the matching cell of the first subdivision

• 2: message is sent to players who are interested in the matching cell of the second subdivision

• 3: message is sent to players who are interested in the matching cell of the third subdivision If there are two
subdivisions we are sending every second update only to players who are in the same cell or interested in
updates of the current cell.

Generated by Doxygen

8.24 CullingHandler Class Reference 107

8.24 CullingHandler Class Reference

Handles the network culling.

Inherits MonoBehaviour, and IPunObservable.

Public Member Functions

• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

This time OnPhotonSerializeView is not used to send or receive any kind of data. It is used to change the currently
active group of the PhotonView component, making it work together with PUN more directly. Keep in mind that this
function is only executed, when there is at least one more player in the room.

8.24.1 Detailed Description

Handles the network culling.

8.24.2 Member Function Documentation

8.24.2.1 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

This time OnPhotonSerializeView is not used to send or receive any kind of data. It is used to change the currently
active group of the PhotonView component, making it work together with PUN more directly. Keep in mind that this
function is only executed, when there is at least one more player in the room.

Implements IPunObservable.

8.25 DefaultPool Class Reference

The default implementation of a PrefabPool for PUN, which actually Instantiates and Destroys GameObjects but
pools a resource.

Inherits IPunPrefabPool.

Public Member Functions

• GameObject Instantiate (string prefabId, Vector3 position, Quaternion rotation)

Returns an inactive instance of a networked GameObject, to be used by PUN.

• void Destroy (GameObject gameObject)

Simply destroys a GameObject.

Generated by Doxygen

108 Class Documentation

Public Attributes

• readonly Dictionary< string, GameObject > ResourceCache = new Dictionary<string, GameObject>()

Contains a GameObject per prefabId, to speed up instantiation.

8.25.1 Detailed Description

The default implementation of a PrefabPool for PUN, which actually Instantiates and Destroys GameObjects but
pools a resource.

This pool is not actually storing GameObjects for later reuse. Instead, it's destroying used GameObjects. However,
prefabs will be loaded from a Resources folder and cached, which speeds up Instantiation a bit.

The ResourceCache is public, so it can be filled without relying on the Resources folders.

8.25.2 Member Function Documentation

8.25.2.1 Destroy()

void Destroy (

GameObject gameObject)

Simply destroys a GameObject.

Parameters

gameObject The GameObject to get rid of.

Implements IPunPrefabPool.

8.25.2.2 Instantiate()

GameObject Instantiate (

string prefabId,

Vector3 position,

Quaternion rotation)

Returns an inactive instance of a networked GameObject, to be used by PUN.

Parameters

prefab←↩

Id
String identifier for the networked object.

position Location of the new object.

rotation Rotation of the new object.

Generated by Doxygen

8.26 EnterRoomParams Class Reference 109

Returns

Implements IPunPrefabPool.

8.25.3 Member Data Documentation

8.25.3.1 ResourceCache

readonly Dictionary<string, GameObject> ResourceCache = new Dictionary<string, GameObject>()

Contains a GameObject per prefabId, to speed up instantiation.

8.26 EnterRoomParams Class Reference

Parameters for creating rooms.

Public Attributes

• string RoomName

The name of the room to create. If null, the server generates a unique name. If not null, it must be unique and new or
will cause an error.

• RoomOptions RoomOptions

The RoomOptions define the optional behaviour of rooms.

• TypedLobby Lobby

A lobby to attach the new room to. If set, this overrides a joined lobby (if any).

• Hashtable PlayerProperties

The custom player properties that describe this client / user. Keys must be strings.

• string[] ExpectedUsers

A list of users who are expected to join the room along with this client. Reserves slots for rooms with MaxPlayers
value.

8.26.1 Detailed Description

Parameters for creating rooms.

8.26.2 Member Data Documentation

Generated by Doxygen

110 Class Documentation

8.26.2.1 ExpectedUsers

string [] ExpectedUsers

A list of users who are expected to join the room along with this client. Reserves slots for rooms with MaxPlayers
value.

8.26.2.2 Lobby

TypedLobby Lobby

A lobby to attach the new room to. If set, this overrides a joined lobby (if any).

8.26.2.3 PlayerProperties

Hashtable PlayerProperties

The custom player properties that describe this client / user. Keys must be strings.

8.26.2.4 RoomName

string RoomName

The name of the room to create. If null, the server generates a unique name. If not null, it must be unique and new
or will cause an error.

8.26.2.5 RoomOptions

RoomOptions RoomOptions

The RoomOptions define the optional behaviour of rooms.

8.27 ErrorCode Class Reference

ErrorCode defines the default codes associated with Photon client/server communication.

Generated by Doxygen

8.27 ErrorCode Class Reference 111

Static Public Attributes

• const int Ok = 0

(0) is always "OK", anything else an error or specific situation.

• const int OperationNotAllowedInCurrentState = -3

(-3) Operation can't be executed yet (e.g. OpJoin can't be called before being authenticated, RaiseEvent cant be used
before getting into a room).

• const int InvalidOperationCode = -2

(-2) The operation you called is not implemented on the server (application) you connect to. Make sure you run the
fitting applications.

• const int InvalidOperation = -2

(-2) The operation you called could not be executed on the server.

• const int InternalServerError = -1

(-1) Something went wrong in the server. Try to reproduce and contact Exit Games.

• const int InvalidAuthentication = 0x7FFF

(32767) Authentication failed. Possible cause: AppId is unknown to Photon (in cloud service).

• const int GameIdAlreadyExists = 0x7FFF - 1

(32766) GameId (name) already in use (can't create another). Change name.

• const int GameFull = 0x7FFF - 2

(32765) Game is full. This rarely happens when some player joined the room before your join completed.

• const int GameClosed = 0x7FFF - 3

(32764) Game is closed and can't be joined. Join another game.

• const int AlreadyMatched = 0x7FFF - 4
• const int ServerFull = 0x7FFF - 5

(32762) All servers are busy. This is a temporary issue and the game logic should try again after a brief wait time.

• const int UserBlocked = 0x7FFF - 6

(32761) Not in use currently.

• const int NoRandomMatchFound = 0x7FFF - 7

(32760) Random matchmaking only succeeds if a room exists thats neither closed nor full. Repeat in a few seconds
or create a new room.

• const int GameDoesNotExist = 0x7FFF - 9

(32758) Join can fail if the room (name) is not existing (anymore). This can happen when players leave while you join.

• const int MaxCcuReached = 0x7FFF - 10

(32757) Authorization on the Photon Cloud failed becaus the concurrent users (CCU) limit of the app's subscription is
reached.

• const int InvalidRegion = 0x7FFF - 11

(32756) Authorization on the Photon Cloud failed because the app's subscription does not allow to use a particular
region's server.

• const int CustomAuthenticationFailed = 0x7FFF - 12

(32755) Custom Authentication of the user failed due to setup reasons (see Cloud Dashboard) or the provided user
data (like username or token). Check error message for details.

• const int AuthenticationTicketExpired = 0x7FF1

(32753) The Authentication ticket expired. Usually, this is refreshed behind the scenes. Connect (and authorize)
again.

• const int PluginReportedError = 0x7FFF - 15

(32752) A server-side plugin (or webhook) failed to execute and reported an error. Check the OperationResponse.←↩

DebugMessage.

• const int PluginMismatch = 0x7FFF - 16

(32751) CreateGame/JoinGame/Join operation fails if expected plugin does not correspond to loaded one.

• const int JoinFailedPeerAlreadyJoined = 32750

(32750) for join requests. Indicates the current peer already called join and is joined to the room.

• const int JoinFailedFoundInactiveJoiner = 32749

Generated by Doxygen

112 Class Documentation

(32749) for join requests. Indicates the list of InactiveActors already contains an actor with the requested ActorNr or
UserId.

• const int JoinFailedWithRejoinerNotFound = 32748

(32748) for join requests. Indicates the list of Actors (active and inactive) did not contain an actor with the requested
ActorNr or UserId.

• const int JoinFailedFoundExcludedUserId = 32747

(32747) for join requests. Note: for future use - Indicates the requested UserId was found in the ExcludedList.

• const int JoinFailedFoundActiveJoiner = 32746

(32746) for join requests. Indicates the list of ActiveActors already contains an actor with the requested ActorNr or
UserId.

• const int HttpLimitReached = 32745

(32745) for SetProerties and Raisevent (if flag HttpForward is true) requests. Indicates the maximum allowd http
requests per minute was reached.

• const int ExternalHttpCallFailed = 32744

(32744) for WebRpc requests. Indicates the the call to the external service failed.

• const int OperationLimitReached = 32743

(32743) for operations with defined limits (as in calls per second, content count or size).

• const int SlotError = 32742

(32742) Server error during matchmaking with slot reservation. E.g. the reserved slots can not exceed MaxPlayers.

• const int InvalidEncryptionParameters = 32741

(32741) Server will react with this error if invalid encryption parameters provided by token

8.27.1 Detailed Description

ErrorCode defines the default codes associated with Photon client/server communication.

8.27.2 Member Data Documentation

8.27.2.1 AuthenticationTicketExpired

const int AuthenticationTicketExpired = 0x7FF1 [static]

(32753) The Authentication ticket expired. Usually, this is refreshed behind the scenes. Connect (and authorize)
again.

8.27.2.2 CustomAuthenticationFailed

const int CustomAuthenticationFailed = 0x7FFF - 12 [static]

(32755) Custom Authentication of the user failed due to setup reasons (see Cloud Dashboard) or the provided user
data (like username or token). Check error message for details.

Generated by Doxygen

8.27 ErrorCode Class Reference 113

8.27.2.3 ExternalHttpCallFailed

const int ExternalHttpCallFailed = 32744 [static]

(32744) for WebRpc requests. Indicates the the call to the external service failed.

8.27.2.4 GameClosed

const int GameClosed = 0x7FFF - 3 [static]

(32764) Game is closed and can't be joined. Join another game.

8.27.2.5 GameDoesNotExist

const int GameDoesNotExist = 0x7FFF - 9 [static]

(32758) Join can fail if the room (name) is not existing (anymore). This can happen when players leave while you
join.

8.27.2.6 GameFull

const int GameFull = 0x7FFF - 2 [static]

(32765) Game is full. This rarely happens when some player joined the room before your join completed.

8.27.2.7 GameIdAlreadyExists

const int GameIdAlreadyExists = 0x7FFF - 1 [static]

(32766) GameId (name) already in use (can't create another). Change name.

8.27.2.8 HttpLimitReached

const int HttpLimitReached = 32745 [static]

(32745) for SetProerties and Raisevent (if flag HttpForward is true) requests. Indicates the maximum allowd http
requests per minute was reached.

Generated by Doxygen

114 Class Documentation

8.27.2.9 InternalServerError

const int InternalServerError = -1 [static]

(-1) Something went wrong in the server. Try to reproduce and contact Exit Games.

8.27.2.10 InvalidAuthentication

const int InvalidAuthentication = 0x7FFF [static]

(32767) Authentication failed. Possible cause: AppId is unknown to Photon (in cloud service).

8.27.2.11 InvalidEncryptionParameters

const int InvalidEncryptionParameters = 32741 [static]

(32741) Server will react with this error if invalid encryption parameters provided by token

8.27.2.12 InvalidOperation

const int InvalidOperation = -2 [static]

(-2) The operation you called could not be executed on the server.

Make sure you are connected to the server you expect.

This code is used in several cases: The arguments/parameters of the operation might be out of range, missing
entirely or conflicting. The operation you called is not implemented on the server (application). Server-side plugins
affect the available operations.

8.27.2.13 InvalidOperationCode

const int InvalidOperationCode = -2 [static]

(-2) The operation you called is not implemented on the server (application) you connect to. Make sure you run the
fitting applications.

Generated by Doxygen

8.27 ErrorCode Class Reference 115

8.27.2.14 InvalidRegion

const int InvalidRegion = 0x7FFF - 11 [static]

(32756) Authorization on the Photon Cloud failed because the app's subscription does not allow to use a particular
region's server.

Some subscription plans for the Photon Cloud are region-bound. Servers of other regions can't be used then.
Check your master server address and compare it with your Photon Cloud Dashboard's info. https://dashboard.←↩

photonengine.com

OpAuthorize is part of connection workflow but only on the Photon Cloud, this error can happen. Self-hosted Photon
servers with a CCU limited license won't let a client connect at all.

8.27.2.15 JoinFailedFoundActiveJoiner

const int JoinFailedFoundActiveJoiner = 32746 [static]

(32746) for join requests. Indicates the list of ActiveActors already contains an actor with the requested ActorNr or
UserId.

8.27.2.16 JoinFailedFoundExcludedUserId

const int JoinFailedFoundExcludedUserId = 32747 [static]

(32747) for join requests. Note: for future use - Indicates the requested UserId was found in the ExcludedList.

8.27.2.17 JoinFailedFoundInactiveJoiner

const int JoinFailedFoundInactiveJoiner = 32749 [static]

(32749) for join requests. Indicates the list of InactiveActors already contains an actor with the requested ActorNr
or UserId.

8.27.2.18 JoinFailedPeerAlreadyJoined

const int JoinFailedPeerAlreadyJoined = 32750 [static]

(32750) for join requests. Indicates the current peer already called join and is joined to the room.

Generated by Doxygen

116 Class Documentation

8.27.2.19 JoinFailedWithRejoinerNotFound

const int JoinFailedWithRejoinerNotFound = 32748 [static]

(32748) for join requests. Indicates the list of Actors (active and inactive) did not contain an actor with the requested
ActorNr or UserId.

8.27.2.20 MaxCcuReached

const int MaxCcuReached = 0x7FFF - 10 [static]

(32757) Authorization on the Photon Cloud failed becaus the concurrent users (CCU) limit of the app's subscription
is reached.

Unless you have a plan with "CCU Burst", clients might fail the authentication step during connect. Affected client are
unable to call operations. Please note that players who end a game and return to the master server will disconnect
and re-connect, which means that they just played and are rejected in the next minute / re-connect. This is a
temporary measure. Once the CCU is below the limit, players will be able to connect an play again.

OpAuthorize is part of connection workflow but only on the Photon Cloud, this error can happen. Self-hosted Photon
servers with a CCU limited license won't let a client connect at all.

8.27.2.21 NoRandomMatchFound

const int NoRandomMatchFound = 0x7FFF - 7 [static]

(32760) Random matchmaking only succeeds if a room exists thats neither closed nor full. Repeat in a few seconds
or create a new room.

8.27.2.22 Ok

const int Ok = 0 [static]

(0) is always "OK", anything else an error or specific situation.

8.27.2.23 OperationLimitReached

const int OperationLimitReached = 32743 [static]

(32743) for operations with defined limits (as in calls per second, content count or size).

Generated by Doxygen

8.27 ErrorCode Class Reference 117

8.27.2.24 OperationNotAllowedInCurrentState

const int OperationNotAllowedInCurrentState = -3 [static]

(-3) Operation can't be executed yet (e.g. OpJoin can't be called before being authenticated, RaiseEvent cant be
used before getting into a room).

Before you call any operations on the Cloud servers, the automated client workflow must complete its authorization.
Wait until State is: JoinedLobby or ConnectedToMasterServer

8.27.2.25 PluginMismatch

const int PluginMismatch = 0x7FFF - 16 [static]

(32751) CreateGame/JoinGame/Join operation fails if expected plugin does not correspond to loaded one.

8.27.2.26 PluginReportedError

const int PluginReportedError = 0x7FFF - 15 [static]

(32752) A server-side plugin (or webhook) failed to execute and reported an error. Check the OperationResponse.←↩

DebugMessage.

8.27.2.27 ServerFull

const int ServerFull = 0x7FFF - 5 [static]

(32762) All servers are busy. This is a temporary issue and the game logic should try again after a brief wait time.

This error may happen for all operations that create rooms. The operation response will contain this error code.

This error is very unlikely to happen as we monitor load on all servers and add them on demand. However, it's good
to be prepared for a shortage of machines or surge in CCUs.

8.27.2.28 SlotError

const int SlotError = 32742 [static]

(32742) Server error during matchmaking with slot reservation. E.g. the reserved slots can not exceed MaxPlayers.

8.27.2.29 UserBlocked

const int UserBlocked = 0x7FFF - 6 [static]

(32761) Not in use currently.

Generated by Doxygen

118 Class Documentation

8.28 ErrorCode Class Reference

ErrorCode defines the default codes associated with Photon client/server communication.

Static Public Attributes

• const int Ok = 0

(0) is always "OK", anything else an error or specific situation.

• const int OperationNotAllowedInCurrentState = -3

(-3) Operation can't be executed yet (e.g. OpJoin can't be called before being authenticated, RaiseEvent cant be used
before getting into a room).

• const int InvalidOperationCode = -2

(-2) The operation you called is not implemented on the server (application) you connect to. Make sure you run the
fitting applications.

• const int InternalServerError = -1

(-1) Something went wrong in the server. Try to reproduce and contact Exit Games.

• const int InvalidAuthentication = 0x7FFF

(32767) Authentication failed. Possible cause: AppId is unknown to Photon (in cloud service).

• const int GameIdAlreadyExists = 0x7FFF - 1

(32766) GameId (name) already in use (can't create another). Change name.

• const int GameFull = 0x7FFF - 2

(32765) Game is full. This rarely happens when some player joined the room before your join completed.

• const int GameClosed = 0x7FFF - 3

(32764) Game is closed and can't be joined. Join another game.

• const int ServerFull = 0x7FFF - 5

(32762) Not in use currently.

• const int UserBlocked = 0x7FFF - 6

(32761) Not in use currently.

• const int NoRandomMatchFound = 0x7FFF - 7

(32760) Random matchmaking only succeeds if a room exists that is neither closed nor full. Repeat in a few seconds
or create a new room.

• const int GameDoesNotExist = 0x7FFF - 9

(32758) Join can fail if the room (name) is not existing (anymore). This can happen when players leave while you join.

• const int MaxCcuReached = 0x7FFF - 10

(32757) Authorization on the Photon Cloud failed because the concurrent users (CCU) limit of the app's subscription
is reached.

• const int InvalidRegion = 0x7FFF - 11

(32756) Authorization on the Photon Cloud failed because the app's subscription does not allow to use a particular
region's server.

• const int CustomAuthenticationFailed = 0x7FFF - 12

(32755) Custom Authentication of the user failed due to setup reasons (see Cloud Dashboard) or the provided user
data (like username or token). Check error message for details.

• const int AuthenticationTicketExpired = 0x7FF1

(32753) The Authentication ticket expired. Usually, this is refreshed behind the scenes. Connect (and authorize)
again.

8.28.1 Detailed Description

ErrorCode defines the default codes associated with Photon client/server communication.

Generated by Doxygen

8.28 ErrorCode Class Reference 119

8.28.2 Member Data Documentation

8.28.2.1 AuthenticationTicketExpired

const int AuthenticationTicketExpired = 0x7FF1 [static]

(32753) The Authentication ticket expired. Usually, this is refreshed behind the scenes. Connect (and authorize)
again.

8.28.2.2 CustomAuthenticationFailed

const int CustomAuthenticationFailed = 0x7FFF - 12 [static]

(32755) Custom Authentication of the user failed due to setup reasons (see Cloud Dashboard) or the provided user
data (like username or token). Check error message for details.

8.28.2.3 GameClosed

const int GameClosed = 0x7FFF - 3 [static]

(32764) Game is closed and can't be joined. Join another game.

8.28.2.4 GameDoesNotExist

const int GameDoesNotExist = 0x7FFF - 9 [static]

(32758) Join can fail if the room (name) is not existing (anymore). This can happen when players leave while you
join.

8.28.2.5 GameFull

const int GameFull = 0x7FFF - 2 [static]

(32765) Game is full. This rarely happens when some player joined the room before your join completed.

Generated by Doxygen

120 Class Documentation

8.28.2.6 GameIdAlreadyExists

const int GameIdAlreadyExists = 0x7FFF - 1 [static]

(32766) GameId (name) already in use (can't create another). Change name.

8.28.2.7 InternalServerError

const int InternalServerError = -1 [static]

(-1) Something went wrong in the server. Try to reproduce and contact Exit Games.

8.28.2.8 InvalidAuthentication

const int InvalidAuthentication = 0x7FFF [static]

(32767) Authentication failed. Possible cause: AppId is unknown to Photon (in cloud service).

8.28.2.9 InvalidOperationCode

const int InvalidOperationCode = -2 [static]

(-2) The operation you called is not implemented on the server (application) you connect to. Make sure you run the
fitting applications.

8.28.2.10 InvalidRegion

const int InvalidRegion = 0x7FFF - 11 [static]

(32756) Authorization on the Photon Cloud failed because the app's subscription does not allow to use a particular
region's server.

Some subscription plans for the Photon Cloud are region-bound. Servers of other regions can't be used then.
Check your master server address and compare it with your Photon Cloud Dashboard's info. https://cloud.←↩

photonengine.com/dashboard

OpAuthorize is part of connection workflow but only on the Photon Cloud, this error can happen. Self-hosted Photon
servers with a CCU limited license won't let a client connect at all.

Generated by Doxygen

8.28 ErrorCode Class Reference 121

8.28.2.11 MaxCcuReached

const int MaxCcuReached = 0x7FFF - 10 [static]

(32757) Authorization on the Photon Cloud failed because the concurrent users (CCU) limit of the app's subscription
is reached.

Unless you have a plan with "CCU Burst", clients might fail the authentication step during connect. Affected client are
unable to call operations. Please note that players who end a game and return to the master server will disconnect
and re-connect, which means that they just played and are rejected in the next minute / re-connect. This is a
temporary measure. Once the CCU is below the limit, players will be able to connect an play again.

OpAuthorize is part of connection workflow but only on the Photon Cloud, this error can happen. Self-hosted Photon
servers with a CCU limited license won't let a client connect at all.

8.28.2.12 NoRandomMatchFound

const int NoRandomMatchFound = 0x7FFF - 7 [static]

(32760) Random matchmaking only succeeds if a room exists that is neither closed nor full. Repeat in a few seconds
or create a new room.

8.28.2.13 Ok

const int Ok = 0 [static]

(0) is always "OK", anything else an error or specific situation.

8.28.2.14 OperationNotAllowedInCurrentState

const int OperationNotAllowedInCurrentState = -3 [static]

(-3) Operation can't be executed yet (e.g. OpJoin can't be called before being authenticated, RaiseEvent cant be
used before getting into a room).

Before you call any operations on the Cloud servers, the automated client workflow must complete its authorization.
In PUN, wait until State is: JoinedLobby or ConnectedToMaster

8.28.2.15 ServerFull

const int ServerFull = 0x7FFF - 5 [static]

(32762) Not in use currently.

Generated by Doxygen

122 Class Documentation

8.28.2.16 UserBlocked

const int UserBlocked = 0x7FFF - 6 [static]

(32761) Not in use currently.

8.29 ErrorInfo Class Reference

Class wrapping the received EventCode.ErrorInfo event.

Public Member Functions

• ErrorInfo (EventData eventData)
• override string ToString ()

Public Attributes

• readonly string Info

String containing information about the error.

8.29.1 Detailed Description

Class wrapping the received EventCode.ErrorInfo event.

This is passed inside IErrorInfoCallback.OnErrorInfo callback. If you implement IOnEventCallback.OnEvent or
LoadBalancingClient.EventReceived you will also get EventCode.ErrorInfo but not parsed.

In most cases this could be either:

1. an error from webhooks plugin (if HasErrorInfo is enabled), read more here: https://doc.photonengine.←↩

com/en-us/realtime/current/gameplay/web-extensions/webhooks#options

2. an error sent from a custom server plugin via PluginHost.BroadcastErrorInfoEvent, see example here←↩

: https://doc.photonengine.com/en-us/server/current/plugins/manual#handling_http_response

3. an error sent from the server, for example, when the limit of cached events has been exceeded in the room
(all clients will be disconnected and the room will be closed in this case) read more here: https://doc.←↩

photonengine.com/en-us/realtime/current/gameplay/cached-events#special_considerations

8.29.2 Member Data Documentation

8.29.2.1 Info

readonly string Info

String containing information about the error.

Generated by Doxygen

8.30 EventCode Class Reference 123

8.30 EventCode Class Reference

Class for constants. These values are for events defined by Photon LoadBalancing.

Static Public Attributes

• const byte GameList = 230

(230) Initial list of RoomInfos (in lobby on Master)

• const byte GameListUpdate = 229

(229) Update of RoomInfos to be merged into "initial" list (in lobby on Master)

• const byte QueueState = 228

(228) Currently not used. State of queueing in case of server-full

• const byte Match = 227

(227) Currently not used. Event for matchmaking

• const byte AppStats = 226

(226) Event with stats about this application (players, rooms, etc)

• const byte LobbyStats = 224

(224) This event provides a list of lobbies with their player and game counts.

• const byte AzureNodeInfo = 210

(210) Internally used in case of hosting by Azure

• const byte Join = (byte)255

(255) Event Join: someone joined the game. The new actorNumber is provided as well as the properties of that actor
(if set in OpJoin).

• const byte Leave = (byte)254

(254) Event Leave: The player who left the game can be identified by the actorNumber.

• const byte PropertiesChanged = (byte)253

(253) When you call OpSetProperties with the broadcast option "on", this event is fired. It contains the properties
being set.

• const byte SetProperties = (byte)253

(253) When you call OpSetProperties with the broadcast option "on", this event is fired. It contains the properties
being set.

• const byte ErrorInfo = 251

(251) Sent by Photon Cloud when a plugin-call or webhook-call failed or events cache limit exceeded. Usually, the
execution on the server continues, despite the issue. Contains: ParameterCode.Info.

• const byte CacheSliceChanged = 250

(250) Sent by Photon whent he event cache slice was changed. Done by OpRaiseEvent.

• const byte AuthEvent = 223

(223) Sent by Photon to update a token before it times out.

8.30.1 Detailed Description

Class for constants. These values are for events defined by Photon LoadBalancing.

They start at 255 and go DOWN. Your own in-game events can start at 0. These constants are used internally.

8.30.2 Member Data Documentation

Generated by Doxygen

124 Class Documentation

8.30.2.1 AppStats

const byte AppStats = 226 [static]

(226) Event with stats about this application (players, rooms, etc)

8.30.2.2 AuthEvent

const byte AuthEvent = 223 [static]

(223) Sent by Photon to update a token before it times out.

8.30.2.3 AzureNodeInfo

const byte AzureNodeInfo = 210 [static]

(210) Internally used in case of hosting by Azure

8.30.2.4 CacheSliceChanged

const byte CacheSliceChanged = 250 [static]

(250) Sent by Photon whent he event cache slice was changed. Done by OpRaiseEvent.

8.30.2.5 ErrorInfo

const byte ErrorInfo = 251 [static]

(251) Sent by Photon Cloud when a plugin-call or webhook-call failed or events cache limit exceeded. Usually, the
execution on the server continues, despite the issue. Contains: ParameterCode.Info.

(252) When player left game unexpected and the room has a playerTtl != 0, this event is fired to let everyone know
about the timeout. Obsolete. Replaced by Leave. public const byte Disconnect = LiteEventCode.Disconnect;

See also

https://doc.photonengine.com/en-us/realtime/current/reference/webhooks::options

Generated by Doxygen

8.30 EventCode Class Reference 125

8.30.2.6 GameList

const byte GameList = 230 [static]

(230) Initial list of RoomInfos (in lobby on Master)

8.30.2.7 GameListUpdate

const byte GameListUpdate = 229 [static]

(229) Update of RoomInfos to be merged into "initial" list (in lobby on Master)

8.30.2.8 Join

const byte Join = (byte)255 [static]

(255) Event Join: someone joined the game. The new actorNumber is provided as well as the properties of that
actor (if set in OpJoin).

8.30.2.9 Leave

const byte Leave = (byte)254 [static]

(254) Event Leave: The player who left the game can be identified by the actorNumber.

8.30.2.10 LobbyStats

const byte LobbyStats = 224 [static]

(224) This event provides a list of lobbies with their player and game counts.

8.30.2.11 Match

const byte Match = 227 [static]

(227) Currently not used. Event for matchmaking

Generated by Doxygen

126 Class Documentation

8.30.2.12 PropertiesChanged

const byte PropertiesChanged = (byte)253 [static]

(253) When you call OpSetProperties with the broadcast option "on", this event is fired. It contains the properties
being set.

8.30.2.13 QueueState

const byte QueueState = 228 [static]

(228) Currently not used. State of queueing in case of server-full

8.30.2.14 SetProperties

const byte SetProperties = (byte)253 [static]

(253) When you call OpSetProperties with the broadcast option "on", this event is fired. It contains the properties
being set.

8.31 EventSystemSpawner Class Reference

Event system spawner. Will add an EventSystem GameObject with an EventSystem component and a
StandaloneInputModule component. Use this in additive scene loading context where you would otherwise
get a "Multiple EventSystem in scene... this is not supported" error from Unity.

Inherits MonoBehaviour.

8.31.1 Detailed Description

Event system spawner. Will add an EventSystem GameObject with an EventSystem component and a
StandaloneInputModule component. Use this in additive scene loading context where you would otherwise
get a "Multiple EventSystem in scene... this is not supported" error from Unity.

8.32 Extensions Class Reference

This static class defines some useful extension methods for several existing classes (e.g. Vector3, float and others).

Generated by Doxygen

8.32 Extensions Class Reference 127

Static Public Member Functions

• static void Merge (this IDictionary target, IDictionary addHash)

Merges all keys from addHash into the target. Adds new keys and updates the values of existing keys in target.

• static void MergeStringKeys (this IDictionary target, IDictionary addHash)

Merges keys of type string to target Hashtable.

• static string ToStringFull (this IDictionary origin)

Helper method for debugging of IDictionary content, including type-information. Using this is not performant.

• static string ToStringFull< T > (this List< T > data)

Helper method for debugging of List<T> content. Using this is not performant.

• static string ToStringFull (this object[] data)

Helper method for debugging of object[] content. Using this is not performant.

• static Hashtable StripToStringKeys (this IDictionary original)

This method copies all string-typed keys of the original into a new Hashtable.

• static Hashtable StripToStringKeys (this Hashtable original)

This method copies all string-typed keys of the original into a new Hashtable.

• static void StripKeysWithNullValues (this IDictionary original)

Removes all keys with null values.

• static void StripKeysWithNullValues (this Hashtable original)

Removes all keys with null values.

• static bool Contains (this int[] target, int nr)

Checks if a particular integer value is in an int-array.

8.32.1 Detailed Description

This static class defines some useful extension methods for several existing classes (e.g. Vector3, float and others).

8.32.2 Member Function Documentation

8.32.2.1 Contains()

static bool Contains (

this int[] target,

int nr) [static]

Checks if a particular integer value is in an int-array.

This might be useful to look up if a particular actorNumber is in the list of players of a room.

Parameters

target The array of ints to check.

nr The number to lookup in target.

Generated by Doxygen

128 Class Documentation

Returns

True if nr was found in target.

8.32.2.2 Merge()

static void Merge (

this IDictionary target,

IDictionary addHash) [static]

Merges all keys from addHash into the target. Adds new keys and updates the values of existing keys in target.

Parameters

target The IDictionary to update.

addHash The IDictionary containing data to merge into target.

8.32.2.3 MergeStringKeys()

static void MergeStringKeys (

this IDictionary target,

IDictionary addHash) [static]

Merges keys of type string to target Hashtable.

Does not remove keys from target (so non-string keys CAN be in target if they were before).

Parameters

target The target IDictionary passed in plus all string-typed keys from the addHash.

addHash A IDictionary that should be merged partly into target to update it.

8.32.2.4 StripKeysWithNullValues() [1/2]

static void StripKeysWithNullValues (

this Hashtable original) [static]

Removes all keys with null values.

Photon properties are removed by setting their value to null. Changes the original IDictionary! Uses lock(keys←↩

WithNullValue), which should be no problem in expected use cases.

Generated by Doxygen

8.32 Extensions Class Reference 129

Parameters

original The IDictionary to strip of keys with null value.

8.32.2.5 StripKeysWithNullValues() [2/2]

static void StripKeysWithNullValues (

this IDictionary original) [static]

Removes all keys with null values.

Photon properties are removed by setting their value to null. Changes the original IDictionary! Uses lock(keys←↩

WithNullValue), which should be no problem in expected use cases.

Parameters

original The IDictionary to strip of keys with null value.

8.32.2.6 StripToStringKeys() [1/2]

static Hashtable StripToStringKeys (

this Hashtable original) [static]

This method copies all string-typed keys of the original into a new Hashtable.

Does not recurse (!) into hashes that might be values in the root-hash. This does not modify the original.

Parameters

original The original IDictonary to get string-typed keys from.

Returns

New Hashtable containing only string-typed keys of the original.

8.32.2.7 StripToStringKeys() [2/2]

static Hashtable StripToStringKeys (

this IDictionary original) [static]

This method copies all string-typed keys of the original into a new Hashtable.

Does not recurse (!) into hashes that might be values in the root-hash. This does not modify the original.

Generated by Doxygen

130 Class Documentation

Parameters

original The original IDictonary to get string-typed keys from.

Returns

New Hashtable containing only string-typed keys of the original.

8.32.2.8 ToStringFull() [1/2]

static string ToStringFull (

this IDictionary origin) [static]

Helper method for debugging of IDictionary content, including type-information. Using this is not performant.

Should only be used for debugging as necessary.

Parameters

origin Some Dictionary or Hashtable.

Returns

String of the content of the IDictionary.

8.32.2.9 ToStringFull() [2/2]

static string ToStringFull (

this object[] data) [static]

Helper method for debugging of object[] content. Using this is not performant.

Should only be used for debugging as necessary.

Parameters

data Any object[].

Returns

A comma-separated string containing each value's ToString().

Generated by Doxygen

8.33 FindFriendsOptions Class Reference 131

8.32.2.10 ToStringFull< T >()

static string ToStringFull< T > (

this List< T > data) [static]

Helper method for debugging of List<T> content. Using this is not performant.

Should only be used for debugging as necessary.

Parameters

data Any List<T> where T implements .ToString().

Returns

A comma-separated string containing each value's ToString().

8.33 FindFriendsOptions Class Reference

Options for OpFindFriends can be combined to filter which rooms of friends are returned.

Public Attributes

• bool CreatedOnGs = false

Include a friend's room only if it is created and confirmed by the game server.

• bool Visible = false

Include a friend's room only if it is visible (using Room.IsVisible).

• bool Open = false

Include a friend's room only if it is open (using Room.IsOpen).

8.33.1 Detailed Description

Options for OpFindFriends can be combined to filter which rooms of friends are returned.

8.33.2 Member Data Documentation

8.33.2.1 CreatedOnGs

bool CreatedOnGs = false

Include a friend's room only if it is created and confirmed by the game server.

Generated by Doxygen

132 Class Documentation

8.33.2.2 Open

bool Open = false

Include a friend's room only if it is open (using Room.IsOpen).

8.33.2.3 Visible

bool Visible = false

Include a friend's room only if it is visible (using Room.IsVisible).

8.34 FriendInfo Class Reference

Used to store info about a friend's online state and in which room he/she is.

Public Member Functions

• override string ToString ()

Properties

• string Name [get]

• string UserId [get, protected set]

• bool IsOnline [get, protected set]

• string Room [get, protected set]

• bool IsInRoom [get]

8.34.1 Detailed Description

Used to store info about a friend's online state and in which room he/she is.

8.35 GamePropertyKey Class Reference

Class for constants. These (byte) values are for "well known" room/game properties used in Photon LoadBalancing.

Generated by Doxygen

8.35 GamePropertyKey Class Reference 133

Static Public Attributes

• const byte MaxPlayers = 255

(255) Max number of players that "fit" into this room. 0 is for "unlimited".

• const byte IsVisible = 254

(254) Makes this room listed or not in the lobby on master.

• const byte IsOpen = 253

(253) Allows more players to join a room (or not).

• const byte PlayerCount = 252

(252) Current count of players in the room. Used only in the lobby on master.

• const byte Removed = 251

(251) True if the room is to be removed from room listing (used in update to room list in lobby on master)

• const byte PropsListedInLobby = 250

(250) A list of the room properties to pass to the RoomInfo list in a lobby. This is used in CreateRoom, which defines
this list once per room.

• const byte CleanupCacheOnLeave = 249

(249) Equivalent of Operation Join parameter CleanupCacheOnLeave.

• const byte MasterClientId = (byte)248

(248) Code for MasterClientId, which is synced by server. When sent as op-parameter this is (byte)203. As room
property this is (byte)248.

• const byte ExpectedUsers = (byte)247

(247) Code for ExpectedUsers in a room. Matchmaking keeps a slot open for the players with these userIDs.

• const byte PlayerTtl = (byte)246

(246) Player Time To Live. How long any player can be inactive (due to disconnect or leave) before the user gets
removed from the playerlist (freeing a slot).

• const byte EmptyRoomTtl = (byte)245

(245) Room Time To Live. How long a room stays available (and in server-memory), after the last player becomes
inactive. After this time, the room gets persisted or destroyed.

8.35.1 Detailed Description

Class for constants. These (byte) values are for "well known" room/game properties used in Photon LoadBalancing.

These constants are used internally. "Custom properties" have to use a string-type as key. They can be assigned
at will.

8.35.2 Member Data Documentation

8.35.2.1 CleanupCacheOnLeave

const byte CleanupCacheOnLeave = 249 [static]

(249) Equivalent of Operation Join parameter CleanupCacheOnLeave.

Generated by Doxygen

134 Class Documentation

8.35.2.2 EmptyRoomTtl

const byte EmptyRoomTtl = (byte)245 [static]

(245) Room Time To Live. How long a room stays available (and in server-memory), after the last player becomes
inactive. After this time, the room gets persisted or destroyed.

8.35.2.3 ExpectedUsers

const byte ExpectedUsers = (byte)247 [static]

(247) Code for ExpectedUsers in a room. Matchmaking keeps a slot open for the players with these userIDs.

8.35.2.4 IsOpen

const byte IsOpen = 253 [static]

(253) Allows more players to join a room (or not).

8.35.2.5 IsVisible

const byte IsVisible = 254 [static]

(254) Makes this room listed or not in the lobby on master.

8.35.2.6 MasterClientId

const byte MasterClientId = (byte)248 [static]

(248) Code for MasterClientId, which is synced by server. When sent as op-parameter this is (byte)203. As room
property this is (byte)248.

Tightly related to ParameterCode.MasterClientId.

8.35.2.7 MaxPlayers

const byte MaxPlayers = 255 [static]

(255) Max number of players that "fit" into this room. 0 is for "unlimited".

Generated by Doxygen

8.36 GraphicToggleIsOnTransition Class Reference 135

8.35.2.8 PlayerCount

const byte PlayerCount = 252 [static]

(252) Current count of players in the room. Used only in the lobby on master.

8.35.2.9 PlayerTtl

const byte PlayerTtl = (byte)246 [static]

(246) Player Time To Live. How long any player can be inactive (due to disconnect or leave) before the user gets
removed from the playerlist (freeing a slot).

8.35.2.10 PropsListedInLobby

const byte PropsListedInLobby = 250 [static]

(250) A list of the room properties to pass to the RoomInfo list in a lobby. This is used in CreateRoom, which defines
this list once per room.

8.35.2.11 Removed

const byte Removed = 251 [static]

(251) True if the room is to be removed from room listing (used in update to room list in lobby on master)

8.36 GraphicToggleIsOnTransition Class Reference

Use this on toggles texts to have some color transition on the text depending on the isOn State.

Inherits MonoBehaviour, IPointerEnterHandler, and IPointerExitHandler.

Public Member Functions

• void OnPointerEnter (PointerEventData eventData)
• void OnPointerExit (PointerEventData eventData)
• void OnEnable ()
• void OnDisable ()
• void OnValueChanged (bool isOn)

Generated by Doxygen

136 Class Documentation

Public Attributes

• Toggle toggle
• Color NormalOnColor = Color.white
• Color NormalOffColor = Color.black
• Color HoverOnColor = Color.black
• Color HoverOffColor = Color.black

8.36.1 Detailed Description

Use this on toggles texts to have some color transition on the text depending on the isOn State.

8.37 IChatClientListener Interface Reference

Callback interface for Chat client side. Contains callback methods to notify your app about updates. Must be
provided to new ChatClient in constructor

Public Member Functions

• void DebugReturn (DebugLevel level, string message)

All debug output of the library will be reported through this method. Print it or put it in a buffer to use it on-screen.

• void OnDisconnected ()

Disconnection happened.

• void OnConnected ()

Client is connected now.

• void OnChatStateChange (ChatState state)

The ChatClient's state changed. Usually, OnConnected and OnDisconnected are the callbacks to react to.

• void OnGetMessages (string channelName, string[] senders, object[] messages)

Notifies app that client got new messages from server Number of senders is equal to number of messages in 'mes-
sages'. Sender with number '0' corresponds to message with number '0', sender with number '1' corresponds to
message with number '1' and so on

• void OnPrivateMessage (string sender, object message, string channelName)

Notifies client about private message

• void OnSubscribed (string[] channels, bool[] results)

Result of Subscribe operation. Returns subscription result for every requested channel name.

• void OnUnsubscribed (string[] channels)

Result of Unsubscribe operation. Returns for channel name if the channel is now unsubscribed.

• void OnStatusUpdate (string user, int status, bool gotMessage, object message)

New status of another user (you get updates for users set in your friends list).

• void OnUserSubscribed (string channel, string user)

A user has subscribed to a public chat channel

• void OnUserUnsubscribed (string channel, string user)

A user has unsubscribed from a public chat channel

8.37.1 Detailed Description

Callback interface for Chat client side. Contains callback methods to notify your app about updates. Must be
provided to new ChatClient in constructor

Generated by Doxygen

8.37 IChatClientListener Interface Reference 137

8.37.2 Member Function Documentation

8.37.2.1 DebugReturn()

void DebugReturn (

DebugLevel level,

string message)

All debug output of the library will be reported through this method. Print it or put it in a buffer to use it on-screen.

Parameters

level DebugLevel (severity) of the message.

message Debug text. Print to System.Console or screen.

8.37.2.2 OnChatStateChange()

void OnChatStateChange (

ChatState state)

The ChatClient's state changed. Usually, OnConnected and OnDisconnected are the callbacks to react to.

Parameters

state The new state.

8.37.2.3 OnConnected()

void OnConnected ()

Client is connected now.

Clients have to be connected before they can send their state, subscribe to channels and send any messages.

8.37.2.4 OnDisconnected()

void OnDisconnected ()

Disconnection happened.

Generated by Doxygen

138 Class Documentation

8.37.2.5 OnGetMessages()

void OnGetMessages (

string channelName,

string[] senders,

object[] messages)

Notifies app that client got new messages from server Number of senders is equal to number of messages in
'messages'. Sender with number '0' corresponds to message with number '0', sender with number '1' corresponds
to message with number '1' and so on

Parameters

channelName channel from where messages came

senders list of users who sent messages

messages list of messages it self

8.37.2.6 OnPrivateMessage()

void OnPrivateMessage (

string sender,

object message,

string channelName)

Notifies client about private message

Parameters

sender user who sent this message

message message it self

channelName channelName for private messages (messages you sent yourself get added to a channel per
target username)

8.37.2.7 OnStatusUpdate()

void OnStatusUpdate (

string user,

int status,

bool gotMessage,

object message)

New status of another user (you get updates for users set in your friends list).

Parameters

user Name of the user.

Generated by Doxygen

8.37 IChatClientListener Interface Reference 139

Parameters

status New status of that user.
gotMessage True if the status contains a message you should cache locally. False: This status update does

not include a message (keep any you have).

message Message that user set.

8.37.2.8 OnSubscribed()

void OnSubscribed (

string[] channels,

bool[] results)

Result of Subscribe operation. Returns subscription result for every requested channel name.

If multiple channels sent in Subscribe operation, OnSubscribed may be called several times, each call with part of
sent array or with single channel in "channels" parameter. Calls order and order of channels in "channels" parameter
may differ from order of channels in "channels" parameter of Subscribe operation.

Parameters

channels Array of channel names.

results Per channel result if subscribed.

8.37.2.9 OnUnsubscribed()

void OnUnsubscribed (

string[] channels)

Result of Unsubscribe operation. Returns for channel name if the channel is now unsubscribed.

If multiple channels sent in Unsubscribe operation, OnUnsubscribed may be called several times, each call with
part of sent array or with single channel in "channels" parameter. Calls order and order of channels in "channels"
parameter may differ from order of channels in "channels" parameter of Unsubscribe operation.

Parameters

channels Array of channel names that are no longer subscribed.

8.37.2.10 OnUserSubscribed()

void OnUserSubscribed (

string channel,

string user)

Generated by Doxygen

140 Class Documentation

A user has subscribed to a public chat channel

Parameters

channel Name of the chat channel
user UserId of the user who subscribed

8.37.2.11 OnUserUnsubscribed()

void OnUserUnsubscribed (

string channel,

string user)

A user has unsubscribed from a public chat channel

Parameters

channel Name of the chat channel
user UserId of the user who unsubscribed

8.38 IConnectionCallbacks Interface Reference

Collection of "organizational" callbacks for the Realtime Api to cover: Connection and Regions.

Inherited by MonoBehaviourPunCallbacks, ConnectionCallbacksContainer, and SupportLogger.

Public Member Functions

• void OnConnected ()

Called to signal that the "low level connection" got established but before the client can call operation on the server.

• void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

• void OnDisconnected (DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or an explicit disconnect call

• void OnRegionListReceived (RegionHandler regionHandler)

Called when the Name Server provided a list of regions for your title.

• void OnCustomAuthenticationResponse (Dictionary< string, object > data)

Called when your Custom Authentication service responds with additional data.

• void OnCustomAuthenticationFailed (string debugMessage)

Called when the custom authentication failed. Followed by disconnect!

Generated by Doxygen

8.38 IConnectionCallbacks Interface Reference 141

8.38.1 Detailed Description

Collection of "organizational" callbacks for the Realtime Api to cover: Connection and Regions.

Classes that implement this interface must be registered to get callbacks for various situations.

To register for callbacks, call LoadBalancingClient.AddCallbackTarget and pass the class implementing this interface
To stop getting callbacks, call LoadBalancingClient.RemoveCallbackTarget and pass the class implementing this
interface

8.38.2 Member Function Documentation

8.38.2.1 OnConnected()

void OnConnected ()

Called to signal that the "low level connection" got established but before the client can call operation on the server.

After the (low level transport) connection is established, the client will automatically send the Authentication opera-
tion, which needs to get a response before the client can call other operations.

Your logic should wait for either: OnRegionListReceived or OnConnectedToMaster.

This callback is useful to detect if the server can be reached at all (technically). Most often, it's enough to implement
OnDisconnected(DisconnectCause cause) and check for the cause.

This is not called for transitions from the masterserver to game servers.

Implemented in ConnectionCallbacksContainer, SupportLogger, and MonoBehaviourPunCallbacks.

8.38.2.2 OnConnectedToMaster()

void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

The list of available rooms won't become available unless you join a lobby via LoadBalancingClient.OpJoinLobby.
You can join rooms and create them even without being in a lobby. The default lobby is used in that case.

Implemented in ConnectionCallbacksContainer, MonoBehaviourPunCallbacks, SupportLogger, and ConnectAndJoinRandom.

8.38.2.3 OnCustomAuthenticationFailed()

void OnCustomAuthenticationFailed (

string debugMessage)

Called when the custom authentication failed. Followed by disconnect!

Custom Authentication can fail due to user-input, bad tokens/secrets. If authentication is successful, this method is
not called. Implement OnJoinedLobby() or OnConnectedToMaster() (as usual).

During development of a game, it might also fail due to wrong configuration on the server side. In those cases,
logging the debugMessage is very important.

Unless you setup a custom authentication service for your app (in the Dashboard), this won't be called!

Generated by Doxygen

142 Class Documentation

Parameters

debugMessage Contains a debug message why authentication failed. This has to be fixed during development.

Implemented in ConnectionCallbacksContainer, MonoBehaviourPunCallbacks, and SupportLogger.

8.38.2.4 OnCustomAuthenticationResponse()

void OnCustomAuthenticationResponse (

Dictionary< string, object > data)

Called when your Custom Authentication service responds with additional data.

Custom Authentication services can include some custom data in their response. When present, that data is made
available in this callback as Dictionary. While the keys of your data have to be strings, the values can be either string
or a number (in Json). You need to make extra sure, that the value type is the one you expect. Numbers become
(currently) int64.

Example: void OnCustomAuthenticationResponse(Dictionary<string, object> data) { ... }

https://doc.photonengine.com/en-us/realtime/current/reference/custom-authentication

Implemented in ConnectionCallbacksContainer, SupportLogger, and MonoBehaviourPunCallbacks.

8.38.2.5 OnDisconnected()

void OnDisconnected (

DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or an explicit disconnect call

The reason for this disconnect is provided as DisconnectCause.

Implemented in ConnectionCallbacksContainer, SupportLogger, MonoBehaviourPunCallbacks, and ConnectAndJoinRandom.

8.38.2.6 OnRegionListReceived()

void OnRegionListReceived (

RegionHandler regionHandler)

Called when the Name Server provided a list of regions for your title.

Check the RegionHandler class description, to make use of the provided values.

Generated by Doxygen

8.39 IErrorInfoCallback Interface Reference 143

Parameters

regionHandler The currently used RegionHandler.

Implemented in ConnectionCallbacksContainer, SupportLogger, and MonoBehaviourPunCallbacks.

8.39 IErrorInfoCallback Interface Reference

Interface for EventCode.ErrorInfo event callback for the Realtime Api.

Inherited by MonoBehaviourPunCallbacks, and ErrorInfoCallbacksContainer.

Public Member Functions

• void OnErrorInfo (ErrorInfo errorInfo)

Called when the client receives an event from the server indicating that an error happened there.

8.39.1 Detailed Description

Interface for EventCode.ErrorInfo event callback for the Realtime Api.

Classes that implement this interface must be registered to get callbacks for various situations.

To register for callbacks, call LoadBalancingClient.AddCallbackTarget and pass the class implementing this interface
To stop getting callbacks, call LoadBalancingClient.RemoveCallbackTarget and pass the class implementing this
interface

8.39.2 Member Function Documentation

8.39.2.1 OnErrorInfo()

void OnErrorInfo (

ErrorInfo errorInfo)

Called when the client receives an event from the server indicating that an error happened there.

In most cases this could be either:

1. an error from webhooks plugin (if HasErrorInfo is enabled), read more here: https://doc.photonengine.←↩

com/en-us/realtime/current/gameplay/web-extensions/webhooks#options

2. an error sent from a custom server plugin via PluginHost.BroadcastErrorInfoEvent, see example here←↩

: https://doc.photonengine.com/en-us/server/current/plugins/manual#handling_http_response

3. an error sent from the server, for example, when the limit of cached events has been exceeded in the room
(all clients will be disconnected and the room will be closed in this case) read more here: https://doc.←↩

photonengine.com/en-us/realtime/current/gameplay/cached-events#special_considerations

If you implement IOnEventCallback.OnEvent or LoadBalancingClient.EventReceived you will also get this event.

Generated by Doxygen

144 Class Documentation

Parameters

errorInfo Object containing information about the error

Implemented in MonoBehaviourPunCallbacks.

8.40 IInRoomCallbacks Interface Reference

Collection of "in room" callbacks for the Realtime Api to cover: Players entering or leaving, property updates and
Master Client switching.

Inherited by MonoBehaviourPunCallbacks, PhotonHandler, PhotonTeamsManager, InRoomCallbacksContainer,
and SupportLogger.

Public Member Functions

• void OnPlayerEnteredRoom (Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

• void OnPlayerLeftRoom (Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

• void OnRoomPropertiesUpdate (Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

• void OnPlayerPropertiesUpdate (Player targetPlayer, Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

• void OnMasterClientSwitched (Player newMasterClient)

Called after switching to a new MasterClient when the current one leaves.

8.40.1 Detailed Description

Collection of "in room" callbacks for the Realtime Api to cover: Players entering or leaving, property updates and
Master Client switching.

Classes that implement this interface must be registered to get callbacks for various situations.

To register for callbacks, call LoadBalancingClient.AddCallbackTarget and pass the class implementing this interface
To stop getting callbacks, call LoadBalancingClient.RemoveCallbackTarget and pass the class implementing this
interface

8.40.2 Member Function Documentation

Generated by Doxygen

8.40 IInRoomCallbacks Interface Reference 145

8.40.2.1 OnMasterClientSwitched()

void OnMasterClientSwitched (

Player newMasterClient)

Called after switching to a new MasterClient when the current one leaves.

This is not called when this client enters a room. The former MasterClient is still in the player list when this method
get called.

Implemented in SupportLogger, PhotonHandler, and MonoBehaviourPunCallbacks.

8.40.2.2 OnPlayerEnteredRoom()

void OnPlayerEnteredRoom (

Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

If your game starts with a certain number of players, this callback can be useful to check the Room.playerCount and
find out if you can start.

Implemented in SupportLogger, PhotonHandler, MonoBehaviourPunCallbacks, PlayerNumbering, and PunTeams.

8.40.2.3 OnPlayerLeftRoom()

void OnPlayerLeftRoom (

Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

If another player leaves the room or if the server detects a lost connection, this callback will be used to notify your
game logic.

Depending on the room's setup, players may become inactive, which means they may return and retake their spot
in the room. In such cases, the Player stays in the Room.Players dictionary.

If the player is not just inactive, it gets removed from the Room.Players dictionary, before the callback is called.

Implemented in SupportLogger, PhotonHandler, MonoBehaviourPunCallbacks, PlayerNumbering, and PunTeams.

8.40.2.4 OnPlayerPropertiesUpdate()

void OnPlayerPropertiesUpdate (

Player targetPlayer,

Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

Changing properties must be done by Player.SetCustomProperties, which causes this callback locally, too.

Generated by Doxygen

146 Class Documentation

Parameters

targetPlayer Contains Player that changed.

changedProps Contains the properties that changed.

Implemented in SupportLogger, MonoBehaviourPunCallbacks, PhotonHandler, PlayerNumbering, and PunTeams.

8.40.2.5 OnRoomPropertiesUpdate()

void OnRoomPropertiesUpdate (

Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

Since v1.25 this method has one parameter: Hashtable propertiesThatChanged.
Changing properties must be done by Room.SetCustomProperties, which causes this callback locally, too.

Parameters

propertiesThatChanged

Implemented in SupportLogger, MonoBehaviourPunCallbacks, PunTurnManager, PhotonHandler, and
CountdownTimer.

8.41 ILobbyCallbacks Interface Reference

Collection of "organizational" callbacks for the Realtime Api to cover the Lobby.

Inherited by MonoBehaviourPunCallbacks, LobbyCallbacksContainer, and SupportLogger.

Public Member Functions

• void OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.

• void OnLeftLobby ()

Called after leaving a lobby.

• void OnRoomListUpdate (List< RoomInfo > roomList)

Called for any update of the room-listing while in a lobby (InLobby) on the Master Server.

• void OnLobbyStatisticsUpdate (List< TypedLobbyInfo > lobbyStatistics)

Called when the Master Server sent an update for the Lobby Statistics.

Generated by Doxygen

8.41 ILobbyCallbacks Interface Reference 147

8.41.1 Detailed Description

Collection of "organizational" callbacks for the Realtime Api to cover the Lobby.

Classes that implement this interface must be registered to get callbacks for various situations.

To register for callbacks, call LoadBalancingClient.AddCallbackTarget and pass the class implementing this interface
To stop getting callbacks, call LoadBalancingClient.RemoveCallbackTarget and pass the class implementing this
interface

8.41.2 Member Function Documentation

8.41.2.1 OnJoinedLobby()

void OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.

While in the lobby, the roomlist is automatically updated in fixed intervals (which you can't modify in the public cloud).
The room list gets available via OnRoomListUpdate.

Implemented in SupportLogger, MonoBehaviourPunCallbacks, and ConnectAndJoinRandom.

8.41.2.2 OnLeftLobby()

void OnLeftLobby ()

Called after leaving a lobby.

When you leave a lobby, OpCreateRoom and OpJoinRandomRoom automatically refer to the default lobby.

Implemented in SupportLogger, and MonoBehaviourPunCallbacks.

8.41.2.3 OnLobbyStatisticsUpdate()

void OnLobbyStatisticsUpdate (

List< TypedLobbyInfo > lobbyStatistics)

Called when the Master Server sent an update for the Lobby Statistics.

This callback has two preconditions: EnableLobbyStatistics must be set to true, before this client connects. And the
client has to be connected to the Master Server, which is providing the info about lobbies.

Implemented in MonoBehaviourPunCallbacks, and SupportLogger.

Generated by Doxygen

148 Class Documentation

8.41.2.4 OnRoomListUpdate()

void OnRoomListUpdate (

List< RoomInfo > roomList)

Called for any update of the room-listing while in a lobby (InLobby) on the Master Server.

Each item is a RoomInfo which might include custom properties (provided you defined those as lobby-listed when
creating a room). Not all types of lobbies provide a listing of rooms to the client. Some are silent and specialized for
server-side matchmaking.

Implemented in SupportLogger, and MonoBehaviourPunCallbacks.

8.42 IMatchmakingCallbacks Interface Reference

Collection of "organizational" callbacks for the Realtime Api to cover Matchmaking.

Inherited by MonoBehaviourPunCallbacks, PhotonHandler, OnJoinedInstantiate, PhotonTeamsManager,
MatchMakingCallbacksContainer, and SupportLogger.

Public Member Functions

• void OnFriendListUpdate (List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.

• void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

• void OnCreateRoomFailed (short returnCode, string message)

Called when the server couldn't create a room (OpCreateRoom failed).

• void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

• void OnJoinRoomFailed (short returnCode, string message)

Called when a previous OpJoinRoom call failed on the server.

• void OnJoinRandomFailed (short returnCode, string message)

Called when a previous OpJoinRandom call failed on the server.

• void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

8.42.1 Detailed Description

Collection of "organizational" callbacks for the Realtime Api to cover Matchmaking.

Classes that implement this interface must be registered to get callbacks for various situations.

To register for callbacks, call LoadBalancingClient.AddCallbackTarget and pass the class implementing this interface
To stop getting callbacks, call LoadBalancingClient.RemoveCallbackTarget and pass the class implementing this
interface

Generated by Doxygen

8.42 IMatchmakingCallbacks Interface Reference 149

8.42.2 Member Function Documentation

8.42.2.1 OnCreatedRoom()

void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see OpCreateRoom).

As any client might close (or drop connection) anytime, there is a chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal", implement OnMasterClientSwitched() and make each new
MasterClient check the room's state.

Implemented in MatchMakingCallbacksContainer, SupportLogger, PhotonHandler, OnJoinedInstantiate, and
MonoBehaviourPunCallbacks.

8.42.2.2 OnCreateRoomFailed()

void OnCreateRoomFailed (

short returnCode,

string message)

Called when the server couldn't create a room (OpCreateRoom failed).

Creating a room may fail for various reasons. Most often, the room already exists (roomname in use) or the
RoomOptions clash and it's impossible to create the room.

When creating a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implemented in MatchMakingCallbacksContainer, SupportLogger, PhotonHandler, OnJoinedInstantiate, and
MonoBehaviourPunCallbacks.

8.42.2.3 OnFriendListUpdate()

void OnFriendListUpdate (

Generated by Doxygen

150 Class Documentation

List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.

After calling OpFindFriends, the Master Server will cache the friend list and send updates to the friend list. The
friends includes the name, userId, online state and the room (if any) for each requested user/friend.

Use the friendList to update your UI and store it, if the UI should highlight changes.

Implemented in MatchMakingCallbacksContainer, MonoBehaviourPunCallbacks, SupportLogger, and OnJoinedInstantiate.

8.42.2.4 OnJoinedRoom()

void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Implemented in MatchMakingCallbacksContainer, SupportLogger, PhotonHandler, MonoBehaviourPunCallbacks,
OnJoinedInstantiate, ConnectAndJoinRandom, PlayerNumbering, and PunTeams.

8.42.2.5 OnJoinRandomFailed()

void OnJoinRandomFailed (

short returnCode,

string message)

Called when a previous OpJoinRandom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

This operation is only ever sent to the Master Server. Once a room is found by the Master Server, the client will
head off to the designated Game Server and use the operation Join on the Game Server.

When using multiple lobbies (via OpJoinLobby or a TypedLobby parameter), another lobby might have more/fitting
rooms.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Generated by Doxygen

8.43 InstantiateParameters Struct Reference 151

Implemented in MatchMakingCallbacksContainer, SupportLogger, MonoBehaviourPunCallbacks, PhotonHandler,
OnJoinedInstantiate, and ConnectAndJoinRandom.

8.42.2.6 OnJoinRoomFailed()

void OnJoinRoomFailed (

short returnCode,

string message)

Called when a previous OpJoinRoom call failed on the server.

Joining a room may fail for various reasons. Most often, the room is full or does not exist anymore (due to someone
else being faster or closing the room).

When joining a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implemented in MatchMakingCallbacksContainer, SupportLogger, PhotonHandler, OnJoinedInstantiate, and
MonoBehaviourPunCallbacks.

8.42.2.7 OnLeftRoom()

void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Implemented in MatchMakingCallbacksContainer, SupportLogger, PhotonHandler, OnJoinedInstantiate,
MonoBehaviourPunCallbacks, PlayerNumbering, and PunTeams.

8.43 InstantiateParameters Struct Reference

Public Member Functions

• InstantiateParameters (string prefabName, Vector3 position, Quaternion rotation, byte @group, object[]
data, byte objLevelPrefix, int[] viewIDs, Player creator, int timestamp)

Generated by Doxygen

152 Class Documentation

Public Attributes

• int[] viewIDs
• byte objLevelPrefix
• object[] data
• byte group
• Quaternion rotation
• Vector3 position
• string prefabName
• Player creator
• int timestamp

8.44 IOnEventCallback Interface Reference

Event callback for the Realtime Api. Covers events from the server and those sent by clients via OpRaiseEvent.

Inherited by PunTurnManager.

Public Member Functions

• void OnEvent (EventData photonEvent)

Called for any incoming events.

8.44.1 Detailed Description

Event callback for the Realtime Api. Covers events from the server and those sent by clients via OpRaiseEvent.

Classes that implement this interface must be registered to get callbacks for various situations.

To register for callbacks, call LoadBalancingClient.AddCallbackTarget and pass the class implementing this interface
To stop getting callbacks, call LoadBalancingClient.RemoveCallbackTarget and pass the class implementing this
interface

8.44.2 Member Function Documentation

8.44.2.1 OnEvent()

void OnEvent (

EventData photonEvent)

Called for any incoming events.

To receive events, implement IOnEventCallback in any class and register it via AddCallbackTarget (either in
LoadBalancingClient or PhotonNetwork).

With the EventData.Sender you can look up the Player who sent the event.

It is best practice to assign an eventCode for each different type of content and action, so the Code will be essential
to read the incoming events.

Implemented in PunTurnManager.

Generated by Doxygen

8.46 IOnPhotonViewOwnerChange Interface Reference 153

8.45 IOnPhotonViewControllerChange Interface Reference

This interface defines a callback for changes to the PhotonView's controller.

Inherits IPhotonViewCallback.

Public Member Functions

• void OnControllerChange (Player newController, Player previousController)

This method will be called when the PhotonView's controller changes.

8.45.1 Detailed Description

This interface defines a callback for changes to the PhotonView's controller.

8.45.2 Member Function Documentation

8.45.2.1 OnControllerChange()

void OnControllerChange (

Player newController,

Player previousController)

This method will be called when the PhotonView's controller changes.

Parameters

newOwner
previousOwner

8.46 IOnPhotonViewOwnerChange Interface Reference

This interface defines a callback for changes to the PhotonView's owner.

Inherits IPhotonViewCallback.

Public Member Functions

• void OnOwnerChange (Player newOwner, Player previousOwner)

This method will be called when the PhotonView's owner changes.

Generated by Doxygen

154 Class Documentation

8.46.1 Detailed Description

This interface defines a callback for changes to the PhotonView's owner.

8.46.2 Member Function Documentation

8.46.2.1 OnOwnerChange()

void OnOwnerChange (

Player newOwner,

Player previousOwner)

This method will be called when the PhotonView's owner changes.

Parameters

newOwner
previousOwner

8.47 IOnPhotonViewPreNetDestroy Interface Reference

This interface defines a callback which fires prior to the PhotonNetwork destroying the PhotonView and Gameobject.

Inherits IPhotonViewCallback.

Public Member Functions

• void OnPreNetDestroy (PhotonView rootView)

This method is called before Destroy() is initiated for a networked object.

8.47.1 Detailed Description

This interface defines a callback which fires prior to the PhotonNetwork destroying the PhotonView and Gameobject.

8.47.2 Member Function Documentation

8.47.2.1 OnPreNetDestroy()

void OnPreNetDestroy (

PhotonView rootView)

This method is called before Destroy() is initiated for a networked object.

Generated by Doxygen

8.48 IPhotonViewCallback Interface Reference 155

Parameters

rootView

8.48 IPhotonViewCallback Interface Reference

Empty Base class for all PhotonView callbacks.

Inherited by IOnPhotonViewControllerChange, IOnPhotonViewOwnerChange, and IOnPhotonViewPreNetDestroy.

8.48.1 Detailed Description

Empty Base class for all PhotonView callbacks.

8.49 IPunInstantiateMagicCallback Interface Reference

Public Member Functions

• void OnPhotonInstantiate (PhotonMessageInfo info)

8.50 IPunObservable Interface Reference

Defines the OnPhotonSerializeView method to make it easy to implement correctly for observable scripts.

Inherited by PhotonAnimatorView, PhotonRigidbody2DView, PhotonRigidbodyView, PhotonTransformView,
PhotonTransformViewClassic, CullingHandler, and SmoothSyncMovement.

Public Member Functions

• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

8.50.1 Detailed Description

Defines the OnPhotonSerializeView method to make it easy to implement correctly for observable scripts.

8.51 IPunOwnershipCallbacks Interface Reference

Global Callback interface for ownership changes. These callbacks will fire for changes to ANY PhotonView that
changes. Consider using IOnPhotonViewControllerChange for callbacks from a specific PhotonView.

Generated by Doxygen

156 Class Documentation

Public Member Functions

• void OnOwnershipRequest (PhotonView targetView, Player requestingPlayer)

Called when another player requests ownership of a PhotonView. Called on all clients, so check if (targetView.IsMine)
or (targetView.Owner == PhotonNetwork.LocalPlayer) to determine if a targetView.TransferOwnership(requesting←↩

Player) response should be given.

• void OnOwnershipTransfered (PhotonView targetView, Player previousOwner)

Called when ownership of a PhotonView is transfered to another player.

• void OnOwnershipTransferFailed (PhotonView targetView, Player senderOfFailedRequest)

Called when an Ownership Request fails for objects with "takeover" setting.

8.51.1 Detailed Description

Global Callback interface for ownership changes. These callbacks will fire for changes to ANY PhotonView that
changes. Consider using IOnPhotonViewControllerChange for callbacks from a specific PhotonView.

8.51.2 Member Function Documentation

8.51.2.1 OnOwnershipRequest()

void OnOwnershipRequest (

PhotonView targetView,

Player requestingPlayer)

Called when another player requests ownership of a PhotonView. Called on all clients, so check if (target←↩

View.IsMine) or (targetView.Owner == PhotonNetwork.LocalPlayer) to determine if a targetView.Transfer←↩

Ownership(requestingPlayer) response should be given.

The parameter viewAndPlayer contains:

PhotonView view = viewAndPlayer[0] as PhotonView;

Player requestingPlayer = viewAndPlayer[1] as Player;

Parameters

targetView PhotonView for which ownership gets requested.

requestingPlayer Player who requests ownership.

8.51.2.2 OnOwnershipTransfered()

void OnOwnershipTransfered (

PhotonView targetView,

Player previousOwner)

Generated by Doxygen

8.52 IPunPrefabPool Interface Reference 157

Called when ownership of a PhotonView is transfered to another player.

The parameter viewAndPlayers contains:

PhotonView view = viewAndPlayers[0] as PhotonView;

Player newOwner = viewAndPlayers[1] as Player;

Player oldOwner = viewAndPlayers[2] as Player;

void OnOwnershipTransfered(object[] viewAndPlayers) {} //

Parameters

targetView PhotonView for which ownership changed.

previousOwner Player who was the previous owner (or null, if none).

8.51.2.3 OnOwnershipTransferFailed()

void OnOwnershipTransferFailed (

PhotonView targetView,

Player senderOfFailedRequest)

Called when an Ownership Request fails for objects with "takeover" setting.

Each request asks to take ownership from a specific controlling player. This can fail if anyone else took over
ownership briefly before the request arrived.

Parameters

targetView

senderOfFailedRequest

8.52 IPunPrefabPool Interface Reference

Defines an interface for object pooling, used in PhotonNetwork.Instantiate and PhotonNetwork.Destroy.

Inherited by DefaultPool.

Public Member Functions

• GameObject Instantiate (string prefabId, Vector3 position, Quaternion rotation)

Called to get an instance of a prefab. Must return valid, disabled GameObject with PhotonView.

• void Destroy (GameObject gameObject)

Called to destroy (or just return) the instance of a prefab. It's disabled and the pool may reset and cache it for later
use in Instantiate.

Generated by Doxygen

158 Class Documentation

8.52.1 Detailed Description

Defines an interface for object pooling, used in PhotonNetwork.Instantiate and PhotonNetwork.Destroy.

To apply your custom IPunPrefabPool, set PhotonNetwork.PrefabPool.

The pool has to return a valid, disabled GameObject when PUN calls Instantiate. Also, the position and rotation
must be applied.

Note that Awake and Start are only called once by Unity, so scripts on re-used GameObjects should make use of
OnEnable and or OnDisable. When OnEnable gets called, the PhotonView is already updated to the new values.

To be able to enable a GameObject, Instantiate must return an inactive object.

Before PUN "destroys" GameObjects, it will disable them.

If a component implements IPunInstantiateMagicCallback, PUN will call OnPhotonInstantiate when the networked
object gets instantiated. If no components implement this on a prefab, PUN will optimize the instantiation and no
longer looks up IPunInstantiateMagicCallback via GetComponents.

8.52.2 Member Function Documentation

8.52.2.1 Destroy()

void Destroy (

GameObject gameObject)

Called to destroy (or just return) the instance of a prefab. It's disabled and the pool may reset and cache it for later
use in Instantiate.

A pool needs some way to find out which type of GameObject got returned via Destroy(). It could be a tag, name, a
component or anything similar.

Parameters

gameObject The instance to destroy.

Implemented in DefaultPool.

8.52.2.2 Instantiate()

GameObject Instantiate (

string prefabId,

Vector3 position,

Quaternion rotation)

Called to get an instance of a prefab. Must return valid, disabled GameObject with PhotonView.

Generated by Doxygen

8.53 IPunTurnManagerCallbacks Interface Reference 159

Parameters

prefab←↩

Id
The id of this prefab.

position The position for the instance.

rotation The rotation for the instance.

Returns

A disabled instance to use by PUN or null if the prefabId is unknown.

Implemented in DefaultPool.

8.53 IPunTurnManagerCallbacks Interface Reference

Public Member Functions

• void OnTurnBegins (int turn)

Called the turn begins event.

• void OnTurnCompleted (int turn)

Called when a turn is completed (finished by all players)

• void OnPlayerMove (Player player, int turn, object move)

Called when a player moved (but did not finish the turn)

• void OnPlayerFinished (Player player, int turn, object move)

When a player finishes a turn (includes the action/move of that player)

• void OnTurnTimeEnds (int turn)

Called when a turn completes due to a time constraint (timeout for a turn)

8.53.1 Member Function Documentation

8.53.1.1 OnPlayerFinished()

void OnPlayerFinished (

Player player,

int turn,

object move)

When a player finishes a turn (includes the action/move of that player)

Parameters

player Player reference

turn Turn index
move Move Object data

Generated by Doxygen

160 Class Documentation

8.53.1.2 OnPlayerMove()

void OnPlayerMove (

Player player,

int turn,

object move)

Called when a player moved (but did not finish the turn)

Parameters

player Player reference

turn Turn Index
move Move Object data

8.53.1.3 OnTurnBegins()

void OnTurnBegins (

int turn)

Called the turn begins event.

Parameters

turn Turn Index

8.53.1.4 OnTurnCompleted()

void OnTurnCompleted (

int turn)

Called when a turn is completed (finished by all players)

Parameters

turn Turn Index

8.53.1.5 OnTurnTimeEnds()

void OnTurnTimeEnds (

Generated by Doxygen

8.54 IWebRpcCallback Interface Reference 161

int turn)

Called when a turn completes due to a time constraint (timeout for a turn)

Parameters

turn Turn index

8.54 IWebRpcCallback Interface Reference

Interface for "WebRpc" callbacks for the Realtime Api. Currently includes only responses for Web RPCs.

Inherited by MonoBehaviourPunCallbacks, and WebRpcCallbacksContainer.

Public Member Functions

• void OnWebRpcResponse (OperationResponse response)

Called when the response to a WebRPC is available. See LoadBalancingClient.OpWebRpc.

8.54.1 Detailed Description

Interface for "WebRpc" callbacks for the Realtime Api. Currently includes only responses for Web RPCs.

Classes that implement this interface must be registered to get callbacks for various situations.

To register for callbacks, call LoadBalancingClient.AddCallbackTarget and pass the class implementing this interface
To stop getting callbacks, call LoadBalancingClient.RemoveCallbackTarget and pass the class implementing this
interface

8.54.2 Member Function Documentation

8.54.2.1 OnWebRpcResponse()

void OnWebRpcResponse (

OperationResponse response)

Called when the response to a WebRPC is available. See LoadBalancingClient.OpWebRpc.

Important: The response.ReturnCode is 0 if Photon was able to reach your web-service.
The content of the response is what your web-service sent. You can create a WebRpcResponse from it.
Example: WebRpcResponse webResponse = new WebRpcResponse(operationResponse);

Please note: Class OperationResponse is in a namespace which needs to be "used":
using ExitGames.Client.Photon; // includes OperationResponse (and other classes)

Generated by Doxygen

162 Class Documentation

public void OnWebRpcResponse(OperationResponse response) { Debug.LogFormat("WebRPC operation re-
sponse {0}", response.ToStringFull()); switch (response.ReturnCode) { case ErrorCode.Ok: WebRpcResponse
webRpcResponse = new WebRpcResponse(response); Debug.LogFormat("Parsed WebRPC response {0}",
response.ToStringFull()); if (string.IsNullOrEmpty(webRpcResponse.Name)) { Debug.LogError("Unexpected←↩

: WebRPC response did not contain WebRPC method name"); } if (webRpcResponse.ResultCode == 0) //
success { switch (webRpcResponse.Name) { // todo: add your code here case GetGameListWebRpcMethod←↩

Name: // example // ... break; } } else if (webRpcResponse.ResultCode == -1) { Debug.LogErrorFormat("Web
server did not return ResultCode for WebRPC method=\"{0}", Message={1}", webRpcResponse.Name, web←↩

RpcResponse.Message); } else { Debug.LogErrorFormat("Web server returned ResultCode={0} for WebRPC
method=\"{1}", Message={2}", webRpcResponse.ResultCode, webRpcResponse.Name, webRpcResponse.←↩

Message); } break; case ErrorCode.ExternalHttpCallFailed: // web service unreachable Debug.LogErrorFormat("←↩

WebRPC call failed as request could not be sent to the server. {0}", response.DebugMessage); break; case
ErrorCode.HttpLimitReached: // too many WebRPCs in a short period of time // the debug message should contain
the limit exceeded Debug.LogErrorFormat("WebRPCs rate limit exceeded: {0}", response.DebugMessage); break;
case ErrorCode.InvalidOperation: // WebRPC not configured at all OR not configured properly OR trying to send
on name server if (PhotonNetwork.Server == ServerConnection.NameServer) { Debug.LogErrorFormat("WebRPC
not supported on NameServer. {0}", response.DebugMessage); } else { Debug.LogErrorFormat("WebRPC not
properly configured or not configured at all. {0}", response.DebugMessage); } break; default: // other unknown error,
unexpected Debug.LogErrorFormat("Unexpected error, {0} {1}", response.ReturnCode, response.DebugMessage);
break; } }

Implemented in MonoBehaviourPunCallbacks.

8.55 LoadBalancingClient Class Reference

This class implements the Photon LoadBalancing workflow by using a LoadBalancingPeer. It keeps a state and will
automatically execute transitions between the Master and Game Servers.

Inherits IPhotonPeerListener.

Public Member Functions

• LoadBalancingClient (ConnectionProtocol protocol=ConnectionProtocol.Udp)

Creates a LoadBalancingClient with UDP protocol or the one specified.

• LoadBalancingClient (string masterAddress, string appId, string gameVersion, ConnectionProtocol
protocol=ConnectionProtocol.Udp)

Creates a LoadBalancingClient, setting various values needed before connecting.

• virtual bool ConnectUsingSettings (AppSettings appSettings)
• bool Connect ()
• virtual bool ConnectToMasterServer ()

Starts the "process" to connect to a Master Server, using MasterServerAddress and AppId properties.

• bool ConnectToNameServer ()

Connects to the NameServer for Photon Cloud, where a region and server list can be obtained.

• bool ConnectToRegionMaster (string region)

Connects you to a specific region's Master Server, using the Name Server to find the IP.

• bool ReconnectToMaster ()

Can be used to reconnect to the master server after a disconnect.

• bool ReconnectAndRejoin ()

Can be used to return to a room quickly by directly reconnecting to a game server to rejoin a room.

• void Disconnect (DisconnectCause cause=DisconnectCause.DisconnectByClientLogic)

Disconnects the peer from a server or stays disconnected. If the client / peer was connected, a callback will be
triggered.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 163

• void SimulateConnectionLoss (bool simulateTimeout)

Useful to test loss of connection which will end in a client timeout. This modifies LoadBalancingPeer.Network←↩

SimulationSettings. Read remarks.

• void Service ()

This method dispatches all available incoming commands and then sends this client's outgoing commands. It uses
DispatchIncomingCommands and SendOutgoingCommands to do that.

• bool OpFindFriends (string[] friendsToFind, FindFriendsOptions options=null)

Request the rooms and online status for a list of friends. All clients should set a unique UserId before connecting.
The result is available in this.FriendList.

• bool OpJoinLobby (TypedLobby lobby)

If already connected to a Master Server, this joins the specified lobby. This request triggers an OnOperationResponse()
call and the callback OnJoinedLobby().

• bool OpLeaveLobby ()

Opposite of joining a lobby. You don't have to explicitly leave a lobby to join another (client can be in one max, at any
time).

• bool OpJoinRandomRoom (OpJoinRandomRoomParams opJoinRandomRoomParams=null)

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

• bool OpJoinRandomOrCreateRoom (OpJoinRandomRoomParams opJoinRandomRoomParams, EnterRoomParams
createRoomParams)

Attempts to join a room that matches the specified filter and creates a room if none found.

• bool OpCreateRoom (EnterRoomParams enterRoomParams)

Creates a new room. Will callback: OnCreatedRoom and OnJoinedRoom or OnCreateRoomFailed.

• bool OpJoinOrCreateRoom (EnterRoomParams enterRoomParams)

Joins a specific room by name and creates it on demand. Will callback: OnJoinedRoom or OnJoinRoomFailed.

• bool OpJoinRoom (EnterRoomParams enterRoomParams)

Joins a room by name. Will callback: OnJoinedRoom or OnJoinRoomFailed.

• bool OpRejoinRoom (string roomName)

Rejoins a room by roomName (using the userID internally to return). Will callback: OnJoinedRoom or OnJoinRoom←↩

Failed.

• bool OpLeaveRoom (bool becomeInactive, bool sendAuthCookie=false)

Leaves the current room, optionally telling the server that the user is just becoming inactive. Will callback: OnLeft←↩

Room.

• bool OpGetGameList (TypedLobby typedLobby, string sqlLobbyFilter)

Gets a list of rooms matching the (non empty) SQL filter for the given SQL-typed lobby.

• bool OpSetCustomPropertiesOfActor (int actorNr, Hashtable propertiesToSet, Hashtable expected←↩

Properties=null, WebFlags webFlags=null)

Updates and synchronizes a Player's Custom Properties. Optionally, expectedProperties can be provided as condi-
tion.

• bool OpSetCustomPropertiesOfRoom (Hashtable propertiesToSet, Hashtable expectedProperties=null,
WebFlags webFlags=null)

Updates and synchronizes this Room's Custom Properties. Optionally, expectedProperties can be provided as con-
dition.

• virtual bool OpRaiseEvent (byte eventCode, object customEventContent, RaiseEventOptions raiseEvent←↩

Options, SendOptions sendOptions)

Send an event with custom code/type and any content to the other players in the same room.

• virtual bool OpChangeGroups (byte[] groupsToRemove, byte[] groupsToAdd)

Operation to handle this client's interest groups (for events in room).

• void ChangeLocalID (int newID)

Internally used to set the LocalPlayer's ID (from -1 to the actual in-room ID).

• virtual void DebugReturn (DebugLevel level, string message)

Debug output of low level api (and this client).

• virtual void OnOperationResponse (OperationResponse operationResponse)

Uses the OperationResponses provided by the server to advance the internal state and call ops as needed.

Generated by Doxygen

164 Class Documentation

• virtual void OnStatusChanged (StatusCode statusCode)

Uses the connection's statusCodes to advance the internal state and call operations as needed.

• virtual void OnEvent (EventData photonEvent)

Uses the photonEvent's provided by the server to advance the internal state and call ops as needed.

• virtual void OnMessage (object message)

In Photon 4, "raw messages" will get their own callback method in the interface. Not used yet.

• bool OpWebRpc (string uriPath, object parameters, bool sendAuthCookie=false)

This operation makes Photon call your custom web-service by path/name with the given parameters (converted into
Json). Use IWebRpcCallback.OnWebRpcResponse as a callback.

• void AddCallbackTarget (object target)

Registers an object for callbacks for the implemented callback-interfaces.

• void RemoveCallbackTarget (object target)

Unregisters an object from callbacks for the implemented callback-interfaces.

Public Attributes

• AuthModeOption AuthMode = AuthModeOption.Auth

Enables the new Authentication workflow.

• EncryptionMode EncryptionMode = EncryptionMode.PayloadEncryption

Defines how the communication gets encrypted.

• string NameServerHost = "ns.photonengine.io"

Name Server Host Name for Photon Cloud. Without port and without any prefix.

• PhotonPortDefinition ServerPortOverrides

Defines overrides for server ports. Used per server-type if > 0. Important: You must change these when the protocol
changes!

• string ProxyServerAddress

Defines a proxy URL for WebSocket connections. Can be the proxy or point to a .pac file.

• ConnectionCallbacksContainer ConnectionCallbackTargets

Wraps up the target objects for a group of callbacks, so they can be called conveniently.

• MatchMakingCallbacksContainer MatchMakingCallbackTargets

Wraps up the target objects for a group of callbacks, so they can be called conveniently.

• bool EnableLobbyStatistics

If enabled, the client will get a list of available lobbies from the Master Server.

• RegionHandler RegionHandler

Contains the list if enabled regions this client may use. Null, unless the client got a response to OpGetRegions.

• string SummaryToCache

Set when the best region pinging is done.

• int NameServerPortInAppSettings

Properties

• LoadBalancingPeer LoadBalancingPeer [get]

The client uses a LoadBalancingPeer as API to communicate with the server. This is public for ease-of-use: Some
methods like OpRaiseEvent are not relevant for the connection state and don't need a override.

• SerializationProtocol SerializationProtocol [get, set]

Gets or sets the binary protocol version used by this client

• string AppVersion [get, set]

The version of your client. A new version also creates a new "virtual app" to separate players from older client
versions.

• string AppId [get, set]

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 165

The AppID as assigned from the Photon Cloud. If you host yourself, this is the "regular" Photon Server Application
Name (most likely: "LoadBalancing").

• ClientAppType ClientType [get, set]

The ClientAppType defines which sort of AppId should be expected. The LoadBalancingClient supports Realtime and
Voice app types. Default: Realtime.

• AuthenticationValues AuthValues [get, set]

User authentication values to be sent to the Photon server right after connecting.

• ConnectionProtocol? ExpectedProtocol [get, set]

Optionally contains a protocol which will be used on Master- and GameServer.

• bool IsUsingNameServer [get, set]

True if this client uses a NameServer to get the Master Server address.

• string NameServerAddress [get]

Name Server Address for Photon Cloud (based on current protocol). You can use the default values and usually won't
have to set this value.

• bool UseAlternativeUdpPorts [get, set]

Replaced by ServerPortOverrides.

• bool EnableProtocolFallback [get, set]

Enables a fallback to another protocol in case a connect to the Name Server fails.

• string CurrentServerAddress [get]

The currently used server address (if any). The type of server is define by Server property.

• string MasterServerAddress [get, set]

Your Master Server address. In PhotonCloud, call ConnectToRegionMaster() to find your Master Server.

• string GameServerAddress [get, set]

The game server's address for a particular room. In use temporarily, as assigned by master.

• ServerConnection Server [get]

The server this client is currently connected or connecting to.

• ClientState State [get, set]

Current state this client is in. Careful: several states are "transitions" that lead to other states.

• bool IsConnected [get]

Returns if this client is currently connected or connecting to some type of server.

• bool IsConnectedAndReady [get]

A refined version of IsConnected which is true only if your connection is ready to send operations.

• DisconnectCause DisconnectedCause [get, protected set]

Summarizes (aggregates) the different causes for disconnects of a client.

• bool InLobby [get]

Internal value if the client is in a lobby.

• TypedLobby CurrentLobby [get, set]

The lobby this client currently uses. Defined when joining a lobby or creating rooms

• Player LocalPlayer [get, set]

The local player is never null but not valid unless the client is in a room, too. The ID will be -1 outside of rooms.

• string NickName [get, set]

The nickname of the player (synced with others). Same as client.LocalPlayer.NickName.

• string UserId [get, set]

An ID for this user. Sent in OpAuthenticate when you connect. If not set, the PlayerName is applied during connect.

• Room CurrentRoom [get, set]

The current room this client is connected to (null if none available).

• bool InRoom [get]

Is true while being in a room (this.state == ClientState.Joined).

• int PlayersOnMasterCount [get, set]

Statistic value available on master server: Players on master (looking for games).

• int PlayersInRoomsCount [get, set]

Generated by Doxygen

166 Class Documentation

Statistic value available on master server: Players in rooms (playing).

• int RoomsCount [get, set]

Statistic value available on master server: Rooms currently created.

• bool IsFetchingFriendList [get]

Internal flag to know if the client currently fetches a friend list.

• string CloudRegion [get]

The cloud region this client connects to. Set by ConnectToRegionMaster(). Not set if you don't use a NameServer!

• string CurrentCluster [get]

The cluster name provided by the Name Server.

Events

• Action< ClientState, ClientState > StateChanged

Register a method to be called when this client's ClientState gets set.

• Action< EventData > EventReceived

Register a method to be called when an event got dispatched. Gets called after the LoadBalancingClient handled the
internal events first.

• Action< OperationResponse > OpResponseReceived

Register a method to be called when an operation response is received.

8.55.1 Detailed Description

This class implements the Photon LoadBalancing workflow by using a LoadBalancingPeer. It keeps a state and will
automatically execute transitions between the Master and Game Servers.

This class (and the Player class) should be extended to implement your own game logic. You can override Create←↩

Player as "factory" method for Players and return your own Player instances. The State of this class is essential to
know when a client is in a lobby (or just on the master) and when in a game where the actual gameplay should take
place. Extension notes: An extension of this class should override the methods of the IPhotonPeerListener, as they
are called when the state changes. Call base.method first, then pick the operation or state you want to react to and
put it in a switch-case. We try to provide demo to each platform where this api can be used, so lookout for those.

8.55.2 Constructor & Destructor Documentation

8.55.2.1 LoadBalancingClient() [1/2]

LoadBalancingClient (

ConnectionProtocol protocol = ConnectionProtocol.Udp)

Creates a LoadBalancingClient with UDP protocol or the one specified.

Parameters

protocol Specifies the network protocol to use for connections.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 167

8.55.2.2 LoadBalancingClient() [2/2]

LoadBalancingClient (

string masterAddress,

string appId,

string gameVersion,

ConnectionProtocol protocol = ConnectionProtocol.Udp)

Creates a LoadBalancingClient, setting various values needed before connecting.

Parameters

masterAddress The Master Server's address to connect to. Used in Connect.
appId The AppId of this title. Needed for the Photon Cloud. Find it in the Dashboard.

gameVersion A version for this client/build. In the Photon Cloud, players are separated by AppId,
GameVersion and Region.

protocol Specifies the network protocol to use for connections.

8.55.3 Member Function Documentation

8.55.3.1 AddCallbackTarget()

void AddCallbackTarget (

object target)

Registers an object for callbacks for the implemented callback-interfaces.

Adding and removing callback targets is queued to not mess with callbacks in execution. Internally, this means that
the addition/removal is done before the LoadBalancingClient calls the next callbacks. This detail should not affect a
game's workflow.

The covered callback interfaces are: IConnectionCallbacks, IMatchmakingCallbacks, ILobbyCallbacks,
IInRoomCallbacks, IOnEventCallback and IWebRpcCallback.

See: The object that registers to get callbacks from this client.

8.55.3.2 ChangeLocalID()

void ChangeLocalID (

int newID)

Internally used to set the LocalPlayer's ID (from -1 to the actual in-room ID).

Parameters

newID New actor ID (a.k.a actorNr) assigned when joining a room.

Generated by Doxygen

168 Class Documentation

8.55.3.3 ConnectToMasterServer()

virtual bool ConnectToMasterServer () [virtual]

Starts the "process" to connect to a Master Server, using MasterServerAddress and AppId properties.

To connect to the Photon Cloud, use ConnectUsingSettings() or ConnectToRegionMaster().

The process to connect includes several steps: the actual connecting, establishing encryption, authentification (of
app and optionally the user) and connecting to the MasterServer

Users can connect either anonymously or use "Custom Authentication" to verify each individual player's login.
Custom Authentication in Photon uses external services and communities to verify users. While the client provides
a user's info, the service setup is done in the Photon Cloud Dashboard. The parameter authValues will set this.←↩

AuthValues and use them in the connect process.

Connecting to the Photon Cloud might fail due to:

• Network issues (OnStatusChanged() StatusCode.ExceptionOnConnect)

• Region not available (OnOperationResponse() for OpAuthenticate with ReturnCode == ErrorCode.InvalidRegion)

• Subscription CCU limit reached (OnOperationResponse() for OpAuthenticate with ReturnCode ==
ErrorCode.MaxCcuReached)

8.55.3.4 ConnectToNameServer()

bool ConnectToNameServer ()

Connects to the NameServer for Photon Cloud, where a region and server list can be obtained.

OpGetRegions

Returns

If the workflow was started or failed right away.

8.55.3.5 ConnectToRegionMaster()

bool ConnectToRegionMaster (

string region)

Connects you to a specific region's Master Server, using the Name Server to find the IP.

If the region is null or empty, no connection will be made. If the region (code) provided is not available, the connection
process will fail on the Name Server. This method connects only to the region defined. No "Best Region" pinging
will be done.

If the region string does not contain a "/", this means no specific cluster is requested. To support "Sharding", the
region gets a "/∗" postfix in this case, to select a random cluster.

Returns

If the operation could be sent. If false, no operation was sent.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 169

8.55.3.6 DebugReturn()

virtual void DebugReturn (

DebugLevel level,

string message) [virtual]

Debug output of low level api (and this client).

This method is not responsible to keep up the state of a LoadBalancingClient. Calling base.DebugReturn on over-
rides is optional.

8.55.3.7 Disconnect()

void Disconnect (

DisconnectCause cause = DisconnectCause.DisconnectByClientLogic)

Disconnects the peer from a server or stays disconnected. If the client / peer was connected, a callback will be
triggered.

Disconnect will attempt to notify the server of the client closing the connection.

Clients that are in a room, will leave the room. If the room's playerTTL > 0, the player will just become inactive (and
may rejoin).

This method will not change the current State, if this client State is PeerCreated, Disconnecting or Disconnected. In
those cases, there is also no callback for the disconnect. The DisconnectedCause will only change if the client was
connected.

8.55.3.8 OnEvent()

virtual void OnEvent (

EventData photonEvent) [virtual]

Uses the photonEvent's provided by the server to advance the internal state and call ops as needed.

This method is essential to update the internal state of a LoadBalancingClient. Overriding methods must call
base.OnEvent.

8.55.3.9 OnMessage()

virtual void OnMessage (

object message) [virtual]

In Photon 4, "raw messages" will get their own callback method in the interface. Not used yet.

8.55.3.10 OnOperationResponse()

virtual void OnOperationResponse (

OperationResponse operationResponse) [virtual]

Uses the OperationResponses provided by the server to advance the internal state and call ops as needed.

When this method finishes, it will call your OnOpResponseAction (if any). This way, you can get any operation
response without overriding this class.

To implement a more complex game/app logic, you should implement your own class that inherits the
LoadBalancingClient. Override this method to use your own operation-responses easily.

This method is essential to update the internal state of a LoadBalancingClient, so overriding methods must call
base.OnOperationResponse().

Generated by Doxygen

170 Class Documentation

Parameters

operationResponse Contains the server's response for an operation called by this peer.

8.55.3.11 OnStatusChanged()

virtual void OnStatusChanged (

StatusCode statusCode) [virtual]

Uses the connection's statusCodes to advance the internal state and call operations as needed.

This method is essential to update the internal state of a LoadBalancingClient. Overriding methods must call
base.OnStatusChanged.

8.55.3.12 OpChangeGroups()

virtual bool OpChangeGroups (

byte[] groupsToRemove,

byte[] groupsToAdd) [virtual]

Operation to handle this client's interest groups (for events in room).

Note the difference between passing null and byte[0]: null won't add/remove any groups. byte[0] will add/remove all
(existing) groups. First, removing groups is executed. This way, you could leave all groups and join only the ones
provided.

Changes become active not immediately but when the server executes this operation (approximately RTT/2).

Parameters

groupsToRemove Groups to remove from interest. Null will not remove any. A byte[0] will remove all.

groupsToAdd Groups to add to interest. Null will not add any. A byte[0] will add all current.

Returns

If operation could be enqueued for sending. Sent when calling: Service or SendOutgoingCommands.

8.55.3.13 OpCreateRoom()

bool OpCreateRoom (

EnterRoomParams enterRoomParams)

Creates a new room. Will callback: OnCreatedRoom and OnJoinedRoom or OnCreateRoomFailed.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 171

When successful, the client will enter the specified room and callback both OnCreatedRoom and OnJoinedRoom.
In all error cases, OnCreateRoomFailed gets called.

Creating a room will fail if the room name is already in use or when the RoomOptions clashing with one another.
Check the EnterRoomParams reference for the various room creation options.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

When you're in the room, this client's State will become ClientState.Joined.

When entering a room, this client's Player Custom Properties will be sent to the room. Use LocalPlayer.Set←↩

CustomProperties to set them, even while not yet in the room. Note that the player properties will be cached locally
and are not wiped when leaving a room.

You can define an array of expectedUsers, to block player slots in the room for these users. The corresponding
feature in Photon is called "Slot Reservation" and can be found in the doc pages.

Parameters

enterRoomParams Definition of properties for the room to create.

Returns

If the operation could be sent currently (requires connection to Master Server).

8.55.3.14 OpFindFriends()

bool OpFindFriends (

string[] friendsToFind,

FindFriendsOptions options = null)

Request the rooms and online status for a list of friends. All clients should set a unique UserId before connecting.
The result is available in this.FriendList.

Used on Master Server to find the rooms played by a selected list of users. The result will be stored in Load←↩

BalancingClient.FriendList, which is null before the first server response.

Users identify themselves by setting a UserId in the LoadBalancingClient instance. This will send the ID in Op←↩

Authenticate during connect (to master and game servers). Note: Changing a player's name doesn't make sense
when using a friend list.

The list of usernames must be fetched from some other source (not provided by Photon).

Internal:
The server response includes 2 arrays of info (each index matching a friend from the request):
ParameterCode.FindFriendsResponseOnlineList = bool[] of online states
ParameterCode.FindFriendsResponseRoomIdList = string[] of room names (empty string if not in a room)

The options may be used to define which state a room must match to be returned.

Generated by Doxygen

172 Class Documentation

Parameters

friendsToFind Array of friend's names (make sure they are unique).

options Options that affect the result of the FindFriends operation.

Returns

If the operation could be sent (requires connection).

8.55.3.15 OpGetGameList()

bool OpGetGameList (

TypedLobby typedLobby,

string sqlLobbyFilter)

Gets a list of rooms matching the (non empty) SQL filter for the given SQL-typed lobby.

Operation is only available for lobbies of type SqlLobby and the filter can not be empty. It will check those conditions
and fail locally, returning false.

This is an async request which triggers a OnOperationResponse() call.

https://doc.photonengine.com/en-us/realtime/current/reference/matchmaking-and-lobby::sql_lobby_type

Parameters

typedLobby The lobby to query. Has to be of type SqlLobby.

sqlLobbyFilter The sql query statement.

Returns

If the operation could be sent (has to be connected).

8.55.3.16 OpJoinLobby()

bool OpJoinLobby (

TypedLobby lobby)

If already connected to a Master Server, this joins the specified lobby. This request triggers an OnOperationResponse()
call and the callback OnJoinedLobby().

Parameters

lobby The lobby to join. Use null for default lobby.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 173

Returns

If the operation could be sent. False, if the client is not IsConnectedAndReady or when it's not connected to a
Master Server.

8.55.3.17 OpJoinOrCreateRoom()

bool OpJoinOrCreateRoom (

EnterRoomParams enterRoomParams)

Joins a specific room by name and creates it on demand. Will callback: OnJoinedRoom or OnJoinRoomFailed.

Useful when players make up a room name to meet in: All involved clients call the same method and whoever is
first, also creates the room.

When successful, the client will enter the specified room. The client which creates the room, will callback both
OnCreatedRoom and OnJoinedRoom. Clients that join an existing room will only callback OnJoinedRoom. In all
error cases, OnJoinRoomFailed gets called.

Joining a room will fail, if the room is full, closed or when the user already is present in the room (checked by userId).

To return to a room, use OpRejoinRoom.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

This client's State is set to ClientState.Joining immediately, when the operation could be called. In the background,
the client will switch servers and call various related operations.

When you're in the room, this client's State will become ClientState.Joined.

If you set room properties in roomOptions, they get ignored when the room is existing already. This avoids changing
the room properties by late joining players.

When entering a room, this client's Player Custom Properties will be sent to the room. Use LocalPlayer.Set←↩

CustomProperties to set them, even while not yet in the room. Note that the player properties will be cached locally
and are not wiped when leaving a room.

You can define an array of expectedUsers, to block player slots in the room for these users. The corresponding
feature in Photon is called "Slot Reservation" and can be found in the doc pages.

Parameters

enterRoomParams Definition of properties for the room to create or join.

Returns

If the operation could be sent currently (requires connection to Master Server).

Generated by Doxygen

174 Class Documentation

8.55.3.18 OpJoinRandomOrCreateRoom()

bool OpJoinRandomOrCreateRoom (

OpJoinRandomRoomParams opJoinRandomRoomParams,

EnterRoomParams createRoomParams)

Attempts to join a room that matches the specified filter and creates a room if none found.

This operation is a combination of filter-based random matchmaking with the option to create a new room, if no
fitting room exists. The benefit of that is that the room creation is done by the same operation and the room can be
found by the very next client, looking for similar rooms.

There are separate parameters for joining and creating a room.

This method can only be called while connected to a Master Server. This client's State is set to ClientState.Joining
immediately.

Either IMatchmakingCallbacks.OnJoinedRoom or IMatchmakingCallbacks.OnCreatedRoom get called.

More about matchmaking: https://doc.photonengine.com/en-us/realtime/current/reference/matchmaking-
and-lobby

Check the return value to make sure the operation will be called on the server. Note: There will be no callbacks if
this method returned false.

Returns

If the operation will be sent (requires connection to Master Server).

8.55.3.19 OpJoinRandomRoom()

bool OpJoinRandomRoom (

OpJoinRandomRoomParams opJoinRandomRoomParams = null)

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

Used for random matchmaking. You can join any room or one with specific properties defined in opJoinRandom←↩

RoomParams.

You can use expectedCustomRoomProperties and expectedMaxPlayers as filters for accepting rooms. If you set
expectedCustomRoomProperties, a room must have the exact same key values set at Custom Properties. You
need to define which Custom Room Properties will be available for matchmaking when you create a room. See:
OpCreateRoom(string roomName, RoomOptions roomOptions, TypedLobby lobby)

This operation fails if no rooms are fitting or available (all full, closed or not visible). It may also fail when actually
joining the room which was found. Rooms may close, become full or empty anytime.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

This client's State is set to ClientState.Joining immediately, when the operation could be called. In the background,
the client will switch servers and call various related operations.

When you're in the room, this client's State will become ClientState.Joined.

When entering a room, this client's Player Custom Properties will be sent to the room. Use LocalPlayer.Set←↩

CustomProperties to set them, even while not yet in the room. Note that the player properties will be cached locally
and are not wiped when leaving a room.

More about matchmaking: https://doc.photonengine.com/en-us/realtime/current/reference/matchmaking-
and-lobby

You can define an array of expectedUsers, to block player slots in the room for these users. The corresponding
feature in Photon is called "Slot Reservation" and can be found in the doc pages.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 175

Parameters

opJoinRandomRoomParams Optional definition of properties to filter rooms in random matchmaking.

Returns

If the operation could be sent currently (requires connection to Master Server).

8.55.3.20 OpJoinRoom()

bool OpJoinRoom (

EnterRoomParams enterRoomParams)

Joins a room by name. Will callback: OnJoinedRoom or OnJoinRoomFailed.

Useful when using lobbies or when players follow friends or invite each other.

When successful, the client will enter the specified room and callback via OnJoinedRoom. In all error cases, On←↩

JoinRoomFailed gets called.

Joining a room will fail if the room is full, closed, not existing or when the user already is present in the room (checked
by userId).

To return to a room, use OpRejoinRoom. When players invite each other and it's unclear who's first to respond, use
OpJoinOrCreateRoom instead.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

A room's name has to be unique (per region, appid and gameversion). When your title uses a global matchmaking
or invitations (e.g. an external solution), keep regions and the game versions in mind to join a room.

This client's State is set to ClientState.Joining immediately, when the operation could be called. In the background,
the client will switch servers and call various related operations.

When you're in the room, this client's State will become ClientState.Joined.

When entering a room, this client's Player Custom Properties will be sent to the room. Use LocalPlayer.Set←↩

CustomProperties to set them, even while not yet in the room. Note that the player properties will be cached locally
and are not wiped when leaving a room.

You can define an array of expectedUsers, to reserve player slots in the room for friends or party members. The
corresponding feature in Photon is called "Slot Reservation" and can be found in the doc pages.

Parameters

enterRoomParams Definition of properties for the room to join.

Generated by Doxygen

176 Class Documentation

Returns

If the operation could be sent currently (requires connection to Master Server).

8.55.3.21 OpLeaveLobby()

bool OpLeaveLobby ()

Opposite of joining a lobby. You don't have to explicitly leave a lobby to join another (client can be in one max, at
any time).

Returns

If the operation could be sent (has to be connected).

8.55.3.22 OpLeaveRoom()

bool OpLeaveRoom (

bool becomeInactive,

bool sendAuthCookie = false)

Leaves the current room, optionally telling the server that the user is just becoming inactive. Will callback: OnLeft←↩

Room.

OpLeaveRoom skips execution when the room is null or the server is not GameServer or the client is disconnecting
from GS already. OpLeaveRoom returns false in those cases and won't change the state, so check return of this
method.

In some cases, this method will skip the OpLeave call and just call Disconnect(), which not only leaves the room but
also the server. Disconnect also triggers a leave and so that workflow is is quicker.

Parameters

becomeInactive If true, this player becomes inactive in the game and can return later (if PlayerTTL of the
room is != 0).

sendAuthCookie WebFlag: Securely transmit the encrypted object AuthCookie to the web service in
PathLeave webhook when available

Returns

If the current room could be left (impossible while not in a room).

8.55.3.23 OpRaiseEvent()

virtual bool OpRaiseEvent (

byte eventCode,

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 177

object customEventContent,

RaiseEventOptions raiseEventOptions,

SendOptions sendOptions) [virtual]

Send an event with custom code/type and any content to the other players in the same room.

Parameters

eventCode Identifies this type of event (and the content). Your game's event codes can start with 0.

customEventContent Any serializable datatype (including Hashtable like the other OpRaiseEvent overloads).

raiseEventOptions Contains used send options. If you pass null, the default options will be used.

sendOptions Send options for reliable, encryption etc

Returns

If operation could be enqueued for sending. Sent when calling: Service or SendOutgoingCommands.

8.55.3.24 OpRejoinRoom()

bool OpRejoinRoom (

string roomName)

Rejoins a room by roomName (using the userID internally to return). Will callback: OnJoinedRoom or OnJoin←↩

RoomFailed.

Used to return to a room, before this user was removed from the players list. Internally, the userID will be checked
by the server, to make sure this user is in the room (active or inactice).

In contrast to join, this operation never adds a players to a room. It will attempt to retake an existing spot in the
playerlist or fail. This makes sure the client doean't accidentally join a room when the game logic meant to re-activate
an existing actor in an existing room.

This method will fail on the server, when the room does not exist, can't be loaded (persistent rooms) or when the
userId is not in the player list of this room. This will lead to a callback OnJoinRoomFailed.

Rejoining room will not send any player properties. Instead client will receive up-to-date ones from server. If you
want to set new player properties, do it once rejoined.

8.55.3.25 OpSetCustomPropertiesOfActor()

bool OpSetCustomPropertiesOfActor (

int actorNr,

Hashtable propertiesToSet,

Hashtable expectedProperties = null,

WebFlags webFlags = null)

Updates and synchronizes a Player's Custom Properties. Optionally, expectedProperties can be provided as con-
dition.

Generated by Doxygen

178 Class Documentation

Custom Properties are a set of string keys and arbitrary values which is synchronized for the players in a Room.
They are available when the client enters the room, as they are in the response of OpJoin and OpCreate.

Custom Properties either relate to the (current) Room or a Player (in that Room).

Both classes locally cache the current key/values and make them available as property: CustomProperties. This is
provided only to read them. You must use the method SetCustomProperties to set/modify them.

Any client can set any Custom Properties anytime (when in a room). It's up to the game logic to organize how they
are best used.

You should call SetCustomProperties only with key/values that are new or changed. This reduces traffic and perfor-
mance.

Unless you define some expectedProperties, setting key/values is always permitted. In this case, the property-
setting client will not receive the new values from the server but instead update its local cache in SetCustom←↩

Properties.

If you define expectedProperties, the server will skip updates if the server property-cache does not contain all
expectedProperties with the same values. In this case, the property-setting client will get an update from the server
and update it's cached key/values at about the same time as everyone else.

The benefit of using expectedProperties can be only one client successfully sets a key from one known value to
another. As example: Store who owns an item in a Custom Property "ownedBy". It's 0 initally. When multiple players
reach the item, they all attempt to change "ownedBy" from 0 to their actorNumber. If you use expectedProperties
{"ownedBy", 0} as condition, the first player to take the item will have it (and the others fail to set the ownership).

Properties get saved with the game state for Turnbased games (which use IsPersistent = true).

Parameters

actorNr Defines which player the Custom Properties belong to. ActorID of a player.

propertiesToSet Hashtable of Custom Properties that changes.

expectedProperties Provide some keys/values to use as condition for setting the new values. Client must be
in room.

webFlags Defines if the set properties should be forwarded to a WebHook. Client must be in room.

Returns

False if propertiesToSet is null or empty or have zero string keys. If not in a room, returns true if local player
and expectedProperties and webFlags are null. False if actorNr is lower than or equal to zero. Otherwise,
returns if the operation could be sent to the server.

8.55.3.26 OpSetCustomPropertiesOfRoom()

bool OpSetCustomPropertiesOfRoom (

Hashtable propertiesToSet,

Hashtable expectedProperties = null,

WebFlags webFlags = null)

Updates and synchronizes this Room's Custom Properties. Optionally, expectedProperties can be provided as
condition.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 179

Custom Properties are a set of string keys and arbitrary values which is synchronized for the players in a Room.
They are available when the client enters the room, as they are in the response of OpJoin and OpCreate.

Custom Properties either relate to the (current) Room or a Player (in that Room).

Both classes locally cache the current key/values and make them available as property: CustomProperties. This is
provided only to read them. You must use the method SetCustomProperties to set/modify them.

Any client can set any Custom Properties anytime (when in a room). It's up to the game logic to organize how they
are best used.

You should call SetCustomProperties only with key/values that are new or changed. This reduces traffic and perfor-
mance.

Unless you define some expectedProperties, setting key/values is always permitted. In this case, the property-
setting client will not receive the new values from the server but instead update its local cache in SetCustom←↩

Properties.

If you define expectedProperties, the server will skip updates if the server property-cache does not contain all
expectedProperties with the same values. In this case, the property-setting client will get an update from the server
and update it's cached key/values at about the same time as everyone else.

The benefit of using expectedProperties can be only one client successfully sets a key from one known value to
another. As example: Store who owns an item in a Custom Property "ownedBy". It's 0 initally. When multiple players
reach the item, they all attempt to change "ownedBy" from 0 to their actorNumber. If you use expectedProperties
{"ownedBy", 0} as condition, the first player to take the item will have it (and the others fail to set the ownership).

Properties get saved with the game state for Turnbased games (which use IsPersistent = true).

Parameters

propertiesToSet Hashtable of Custom Properties that changes.

expectedProperties Provide some keys/values to use as condition for setting the new values.

webFlags Defines web flags for an optional PathProperties webhook.

Returns

False if propertiesToSet is null or empty or have zero string keys. Otherwise, returns if the operation could be
sent to the server.

8.55.3.27 OpWebRpc()

bool OpWebRpc (

string uriPath,

object parameters,

bool sendAuthCookie = false)

This operation makes Photon call your custom web-service by path/name with the given parameters (converted into
Json). Use IWebRpcCallback.OnWebRpcResponse as a callback.

A WebRPC calls a custom, http-based function on a server you provide. The uriPath is relative to a "base path"
which is configured server-side. The sent parameters get converted from C# types to Json. Vice versa, the response
of the web-service will be converted to C# types and sent back as normal operation response.

Generated by Doxygen

180 Class Documentation

To use this feature, you have to setup your server:

For a Photon Cloud application, visit the Dashboard and setup "WebHooks". The BaseUrl is used for WebRPCs
as well.

The class WebRpcResponse is a helper-class that extracts the most valuable content from the WebRPC response.

Parameters

uriPath The url path to call, relative to the baseUrl configured on Photon's server-side.

parameters The parameters to send to the web-service method.

sendAuthCookie Defines if the authentication cookie gets sent to a WebHook (if setup).

8.55.3.28 ReconnectAndRejoin()

bool ReconnectAndRejoin ()

Can be used to return to a room quickly by directly reconnecting to a game server to rejoin a room.

Rejoining room will not send any player properties. Instead client will receive up-to-date ones from server. If you
want to set new player properties, do it once rejoined.

Returns

False, if the conditions are not met. Then, this client does not attempt the ReconnectAndRejoin.

8.55.3.29 ReconnectToMaster()

bool ReconnectToMaster ()

Can be used to reconnect to the master server after a disconnect.

Common use case: Press the Lock Button on a iOS device and you get disconnected immediately.

8.55.3.30 RemoveCallbackTarget()

void RemoveCallbackTarget (

object target)

Unregisters an object from callbacks for the implemented callback-interfaces.

Adding and removing callback targets is queued to not mess with callbacks in execution. Internally, this means that
the addition/removal is done before the LoadBalancingClient calls the next callbacks. This detail should not affect a
game's workflow.

The covered callback interfaces are: IConnectionCallbacks, IMatchmakingCallbacks, ILobbyCallbacks,
IInRoomCallbacks, IOnEventCallback and IWebRpcCallback.

See:

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 181

Parameters

target The object that unregisters from getting callbacks.

8.55.3.31 Service()

void Service ()

This method dispatches all available incoming commands and then sends this client's outgoing commands. It uses
DispatchIncomingCommands and SendOutgoingCommands to do that.

The Photon client libraries are designed to fit easily into a game or application. The application is in control of
the context (thread) in which incoming events and responses are executed and has full control of the creation of
UDP/TCP packages.

Sending packages and dispatching received messages are two separate tasks. Service combines them into one
method at the cost of control. It calls DispatchIncomingCommands and SendOutgoingCommands.

Call this method regularly (10..50 times a second).

This will Dispatch ANY received commands (unless a reliable command in-order is still missing) and events AND
will send queued outgoing commands. Fewer calls might be more effective if a device cannot send many packets
per second, as multiple operations might be combined into one package.

You could replace Service by:

while (DispatchIncomingCommands()); //Dispatch until everything is Dispatched...
SendOutgoingCommands(); //Send a UDP/TCP package with outgoing messages

See also

PhotonPeer.DispatchIncomingCommands, PhotonPeer.SendOutgoingCommands

8.55.3.32 SimulateConnectionLoss()

void SimulateConnectionLoss (

bool simulateTimeout)

Useful to test loss of connection which will end in a client timeout. This modifies LoadBalancingPeer.Network←↩

SimulationSettings. Read remarks.

Use with care as this sets LoadBalancingPeer.IsSimulationEnabled.
Read LoadBalancingPeer.IsSimulationEnabled to check if this is on or off, if needed.

If simulateTimeout is true, LoadBalancingPeer.NetworkSimulationSettings.IncomingLossPercentage and Load←↩

BalancingPeer.NetworkSimulationSettings.OutgoingLossPercentage will be set to 100.
Obviously, this overrides any network simulation settings done before.

If you want fine-grained network simulation control, use the NetworkSimulationSettings.

The timeout will lead to a call to IConnectionCallbacks.OnDisconnected, as usual in a client timeout.

You could modify this method (or use NetworkSimulationSettings) to deliberately run into a server timeout by just
setting the OutgoingLossPercentage = 100 and the IncomingLossPercentage = 0.

Generated by Doxygen

182 Class Documentation

Parameters

simulateTimeout If true, a connection loss is simulated. If false, the simulation ends.

8.55.4 Member Data Documentation

8.55.4.1 AuthMode

AuthModeOption AuthMode = AuthModeOption.Auth

Enables the new Authentication workflow.

8.55.4.2 ConnectionCallbackTargets

ConnectionCallbacksContainer ConnectionCallbackTargets

Wraps up the target objects for a group of callbacks, so they can be called conveniently.

By using Add or Remove, objects can "subscribe" or "unsubscribe" for this group of callbacks.

8.55.4.3 EnableLobbyStatistics

bool EnableLobbyStatistics

If enabled, the client will get a list of available lobbies from the Master Server.

Set this value before the client connects to the Master Server. While connected to the Master Server, a change has
no effect.

Implement OptionalInfoCallbacks.OnLobbyStatisticsUpdate, to get the list of used lobbies.

The lobby statistics can be useful if your title dynamically uses lobbies, depending (e.g.) on current player activity
or such. In this case, getting a list of available lobbies, their room-count and player-count can be useful info.

ConnectUsingSettings sets this to the PhotonServerSettings value.

8.55.4.4 EncryptionMode

EncryptionMode EncryptionMode = EncryptionMode.PayloadEncryption

Defines how the communication gets encrypted.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 183

8.55.4.5 MatchMakingCallbackTargets

MatchMakingCallbacksContainer MatchMakingCallbackTargets

Wraps up the target objects for a group of callbacks, so they can be called conveniently.

By using Add or Remove, objects can "subscribe" or "unsubscribe" for this group of callbacks.

8.55.4.6 NameServerHost

string NameServerHost = "ns.photonengine.io"

Name Server Host Name for Photon Cloud. Without port and without any prefix.

8.55.4.7 ProxyServerAddress

string ProxyServerAddress

Defines a proxy URL for WebSocket connections. Can be the proxy or point to a .pac file.

This URL supports various definitions:

"user:pass@proxyaddress:port"
"proxyaddress:port"
"system:"
"pac:"
"pac:http://host/path/pacfile.pac"

Important: Don't define a protocol, except to point to a pac file. the proxy address should not begin with http:// or
https://.

8.55.4.8 RegionHandler

RegionHandler RegionHandler

Contains the list if enabled regions this client may use. Null, unless the client got a response to OpGetRegions.

8.55.4.9 ServerPortOverrides

PhotonPortDefinition ServerPortOverrides

Defines overrides for server ports. Used per server-type if > 0. Important: You must change these when the
protocol changes!

Typical ports are listed in PhotonPortDefinition.

Instead of using the port provided from the servers, the specified port is used (independent of the protocol). If a
value is 0 (default), the port is not being replaced.

Different protocols have different typical ports per server-type. https://doc.photonengine.com/en-us/pun/current/reference/tcp-
and-udp-port-numbers

In case of using the AuthMode AutOnceWss, the name server's protocol is wss, while udp or tcp will be used on the
master server and game server. Set the ports accordingly per protocol and server.

Generated by Doxygen

184 Class Documentation

8.55.4.10 SummaryToCache

string SummaryToCache

Set when the best region pinging is done.

8.55.5 Property Documentation

8.55.5.1 AppId

string AppId [get], [set]

The AppID as assigned from the Photon Cloud. If you host yourself, this is the "regular" Photon Server Application
Name (most likely: "LoadBalancing").

8.55.5.2 AppVersion

string AppVersion [get], [set]

The version of your client. A new version also creates a new "virtual app" to separate players from older client
versions.

8.55.5.3 AuthValues

AuthenticationValues AuthValues [get], [set]

User authentication values to be sent to the Photon server right after connecting.

Set this property or pass AuthenticationValues by Connect(..., authValues).

8.55.5.4 ClientType

ClientAppType ClientType [get], [set]

The ClientAppType defines which sort of AppId should be expected. The LoadBalancingClient supports Realtime
and Voice app types. Default: Realtime.

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 185

8.55.5.5 CloudRegion

string CloudRegion [get]

The cloud region this client connects to. Set by ConnectToRegionMaster(). Not set if you don't use a NameServer!

8.55.5.6 CurrentCluster

string CurrentCluster [get]

The cluster name provided by the Name Server.

The value is provided by the OpResponse for OpAuthenticate/OpAuthenticateOnce. Default: null. This value only
ever updates from the Name Server authenticate response.

8.55.5.7 CurrentLobby

TypedLobby CurrentLobby [get], [set]

The lobby this client currently uses. Defined when joining a lobby or creating rooms

8.55.5.8 CurrentRoom

Room CurrentRoom [get], [set]

The current room this client is connected to (null if none available).

8.55.5.9 CurrentServerAddress

string CurrentServerAddress [get]

The currently used server address (if any). The type of server is define by Server property.

8.55.5.10 DisconnectedCause

DisconnectCause DisconnectedCause [get], [protected set]

Summarizes (aggregates) the different causes for disconnects of a client.

A disconnect can be caused by: errors in the network connection or some vital operation failing (which is considered
"high level"). While operations always trigger a call to OnOperationResponse, connection related changes are
treated in OnStatusChanged. The DisconnectCause is set in either case and summarizes the causes for any
disconnect in a single state value which can be used to display (or debug) the cause for disconnection.

Generated by Doxygen

186 Class Documentation

8.55.5.11 EnableProtocolFallback

bool EnableProtocolFallback [get], [set]

Enables a fallback to another protocol in case a connect to the Name Server fails.

When connecting to the Name Server fails for a first time, the client will select an alternative network protocol and
re-try to connect.

The fallback will use the default Name Server port as defined by ProtocolToNameServerPort.

The fallback for TCP is UDP. All other protocols fallback to TCP.

8.55.5.12 ExpectedProtocol

ConnectionProtocol? ExpectedProtocol [get], [set]

Optionally contains a protocol which will be used on Master- and GameServer.

When using AuthMode = AuthModeOption.AuthOnceWss, the client uses a wss-connection on the NameServer but
another protocol on the other servers. As the NameServer sends an address, which is different per protocol, it
needs to know the expected protocol.

This is nullable by design. In many cases, the protocol on the NameServer is not different from the other servers.
If set, the operation AuthOnce will contain this value and the OpAuth response on the NameServer will execute a
protocol switch.

summary>Simplifies getting the token for connect/init requests, if this feature is enabled.

8.55.5.13 GameServerAddress

string GameServerAddress [get], [set]

The game server's address for a particular room. In use temporarily, as assigned by master.

8.55.5.14 InLobby

bool InLobby [get]

Internal value if the client is in a lobby.

This is used to re-set this.State, when joining/creating a room fails.

8.55.5.15 InRoom

bool InRoom [get]

Is true while being in a room (this.state == ClientState.Joined).

Aside from polling this value, game logic should implement IMatchmakingCallbacks in some class and react when
that gets called.
OpRaiseEvent, OpLeave and some other operations can only be used (successfully) when the client is in a room..

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 187

8.55.5.16 IsConnected

bool IsConnected [get]

Returns if this client is currently connected or connecting to some type of server.

This is even true while switching servers. Use IsConnectedAndReady to check only for those states that enable you
to send Operations.

8.55.5.17 IsConnectedAndReady

bool IsConnectedAndReady [get]

A refined version of IsConnected which is true only if your connection is ready to send operations.

Not all operations can be called on all types of servers. If an operation is unavailable on the currently connected
server, this will result in a OperationResponse with ErrorCode != 0.

Examples: The NameServer allows OpGetRegions which is not available anywhere else. The MasterServer does
not allow you to send events (OpRaiseEvent) and on the GameServer you are unable to join a lobby (OpJoinLobby).

To check which server you are on, use: Server.

8.55.5.18 IsFetchingFriendList

bool IsFetchingFriendList [get]

Internal flag to know if the client currently fetches a friend list.

8.55.5.19 IsUsingNameServer

bool IsUsingNameServer [get], [set]

True if this client uses a NameServer to get the Master Server address.

This value is public, despite being an internal value, which should only be set by this client.

8.55.5.20 LoadBalancingPeer

LoadBalancingPeer LoadBalancingPeer [get]

The client uses a LoadBalancingPeer as API to communicate with the server. This is public for ease-of-use: Some
methods like OpRaiseEvent are not relevant for the connection state and don't need a override.

Generated by Doxygen

188 Class Documentation

8.55.5.21 LocalPlayer

Player LocalPlayer [get], [set]

The local player is never null but not valid unless the client is in a room, too. The ID will be -1 outside of rooms.

8.55.5.22 MasterServerAddress

string MasterServerAddress [get], [set]

Your Master Server address. In PhotonCloud, call ConnectToRegionMaster() to find your Master Server.

In the Photon Cloud, explicit definition of a Master Server Address is not best practice. The Photon Cloud has a
"Name Server" which redirects clients to a specific Master Server (per Region and AppId).

8.55.5.23 NameServerAddress

string NameServerAddress [get]

Name Server Address for Photon Cloud (based on current protocol). You can use the default values and usually
won't have to set this value.

8.55.5.24 NickName

string NickName [get], [set]

The nickname of the player (synced with others). Same as client.LocalPlayer.NickName.

8.55.5.25 PlayersInRoomsCount

int PlayersInRoomsCount [get], [set]

Statistic value available on master server: Players in rooms (playing).

8.55.5.26 PlayersOnMasterCount

int PlayersOnMasterCount [get], [set]

Statistic value available on master server: Players on master (looking for games).

Generated by Doxygen

8.55 LoadBalancingClient Class Reference 189

8.55.5.27 RoomsCount

int RoomsCount [get], [set]

Statistic value available on master server: Rooms currently created.

8.55.5.28 SerializationProtocol

SerializationProtocol SerializationProtocol [get], [set]

Gets or sets the binary protocol version used by this client

Use this always instead of setting it via LoadBalancingClient.LoadBalancingPeer (PhotonPeer.Serialization←↩

ProtocolType) directly, especially when WSS protocol is used.

8.55.5.29 Server

ServerConnection Server [get]

The server this client is currently connected or connecting to.

Each server (NameServer, MasterServer, GameServer) allow some operations and reject others.

8.55.5.30 State

ClientState State [get], [set]

Current state this client is in. Careful: several states are "transitions" that lead to other states.

8.55.5.31 UseAlternativeUdpPorts

bool UseAlternativeUdpPorts [get], [set]

Replaced by ServerPortOverrides.

8.55.5.32 UserId

string UserId [get], [set]

An ID for this user. Sent in OpAuthenticate when you connect. If not set, the PlayerName is applied during connect.

On connect, if the UserId is null or empty, the client will copy the PlayName to UserId. If PlayerName is not set
either (before connect), the server applies a temporary ID which stays unknown to this client and other clients.

The UserId is what's used in FindFriends and for fetching data for your account (with WebHooks e.g.).

By convention, set this ID before you connect, not while being connected. There is no error but the ID won't change
while being connected.

Generated by Doxygen

190 Class Documentation

8.55.6 Event Documentation

8.55.6.1 EventReceived

Action<EventData> EventReceived

Register a method to be called when an event got dispatched. Gets called after the LoadBalancingClient handled
the internal events first.

This is an alternative to extending LoadBalancingClient to override OnEvent().

Note that OnEvent is calling EventReceived after it handled internal events first. That means for example: Joining
players will already be in the player list but leaving players will already be removed from the room.

8.55.6.2 OpResponseReceived

Action<OperationResponse> OpResponseReceived

Register a method to be called when an operation response is received.

This is an alternative to extending LoadBalancingClient to override OnOperationResponse().

Note that OnOperationResponse gets executed before your Action is called. That means for example: The Op←↩

JoinLobby response already set the state to "JoinedLobby" and the response to OpLeave already triggered the
Disconnect before this is called.

8.55.6.3 StateChanged

Action<ClientState, ClientState> StateChanged

Register a method to be called when this client's ClientState gets set.

This can be useful to react to being connected, joined into a room, etc.

8.56 LoadBalancingPeer Class Reference

A LoadBalancingPeer provides the operations and enum definitions needed to use the LoadBalancing server appli-
cation which is also used in Photon Cloud.

Inherits PhotonPeer.

Generated by Doxygen

8.56 LoadBalancingPeer Class Reference 191

Public Member Functions

• LoadBalancingPeer (ConnectionProtocol protocolType)

Creates a Peer with specified connection protocol. You need to set the Listener before using the peer.

• LoadBalancingPeer (IPhotonPeerListener listener, ConnectionProtocol protocolType)

Creates a Peer with specified connection protocol and a Listener for callbacks.

• virtual bool OpGetRegions (string appId)
• virtual bool OpJoinLobby (TypedLobby lobby=null)

Joins the lobby on the Master Server, where you get a list of RoomInfos of currently open rooms. This is an async
request which triggers a OnOperationResponse() call.

• virtual bool OpLeaveLobby ()

Leaves the lobby on the Master Server. This is an async request which triggers a OnOperationResponse() call.

• virtual bool OpCreateRoom (EnterRoomParams opParams)

Creates a room (on either Master or Game Server). The OperationResponse depends on the server the peer is
connected to: Master will return a Game Server to connect to. Game Server will return the joined Room's data. This
is an async request which triggers a OnOperationResponse() call.

• virtual bool OpJoinRoom (EnterRoomParams opParams)

Joins a room by name or creates new room if room with given name not exists. The OperationResponse depends
on the server the peer is connected to: Master will return a Game Server to connect to. Game Server will return the
joined Room's data. This is an async request which triggers a OnOperationResponse() call.

• virtual bool OpJoinRandomRoom (OpJoinRandomRoomParams opJoinRandomRoomParams)

Operation to join a random, available room. Overloads take additional player properties. This is an async request
which triggers a OnOperationResponse() call. If all rooms are closed or full, the OperationResponse will have a
returnCode of ErrorCode.NoRandomMatchFound. If successful, the OperationResponse contains a gameserver
address and the name of some room.

• virtual bool OpJoinRandomOrCreateRoom (OpJoinRandomRoomParams opJoinRandomRoomParams,
EnterRoomParams createRoomParams)

Only used on the Master Server. It will assign a game server and room to join-or-create. On the Game Server, the
OpJoin is used with option "create if not exists".

• virtual bool OpLeaveRoom (bool becomeInactive, bool sendAuthCookie=false)

Leaves a room with option to come back later or "for good".

• virtual bool OpGetGameList (TypedLobby lobby, string queryData)

Gets a list of games matching a SQL-like where clause.

• virtual bool OpFindFriends (string[] friendsToFind, FindFriendsOptions options=null)

Request the rooms and online status for a list of friends (each client must set a unique username via OpAuthenticate).

• bool OpSetCustomPropertiesOfActor (int actorNr, Hashtable actorProperties)
• bool OpSetCustomPropertiesOfRoom (Hashtable gameProperties)
• virtual bool OpAuthenticate (string appId, string appVersion, AuthenticationValues authValues, string region←↩

Code, bool getLobbyStatistics)

Sends this app's appId and appVersion to identify this application server side. This is an async request which triggers
a OnOperationResponse() call.

• virtual bool OpAuthenticateOnce (string appId, string appVersion, AuthenticationValues authValues, string
regionCode, EncryptionMode encryptionMode, ConnectionProtocol expectedProtocol)

Sends this app's appId and appVersion to identify this application server side. This is an async request which triggers
a OnOperationResponse() call.

• virtual bool OpChangeGroups (byte[] groupsToRemove, byte[] groupsToAdd)

Operation to handle this client's interest groups (for events in room).

• virtual bool OpRaiseEvent (byte eventCode, object customEventContent, RaiseEventOptions raiseEvent←↩

Options, SendOptions sendOptions)

Send an event with custom code/type and any content to the other players in the same room.

• virtual bool OpSettings (bool receiveLobbyStats)

Internally used operation to set some "per server" settings. This is for the Master Server.

Generated by Doxygen

192 Class Documentation

Protected Member Functions

• bool OpSetPropertyOfRoom (byte propCode, object value)

8.56.1 Detailed Description

A LoadBalancingPeer provides the operations and enum definitions needed to use the LoadBalancing server appli-
cation which is also used in Photon Cloud.

This class is internally used. The LoadBalancingPeer does not keep a state, instead this is done by a
LoadBalancingClient.

8.56.2 Constructor & Destructor Documentation

8.56.2.1 LoadBalancingPeer() [1/2]

LoadBalancingPeer (

ConnectionProtocol protocolType)

Creates a Peer with specified connection protocol. You need to set the Listener before using the peer.

Each connection protocol has it's own default networking ports for Photon.

Parameters

protocolType The preferred option is UDP.

8.56.2.2 LoadBalancingPeer() [2/2]

LoadBalancingPeer (

IPhotonPeerListener listener,

ConnectionProtocol protocolType)

Creates a Peer with specified connection protocol and a Listener for callbacks.

8.56.3 Member Function Documentation

Generated by Doxygen

8.56 LoadBalancingPeer Class Reference 193

8.56.3.1 OpAuthenticate()

virtual bool OpAuthenticate (

string appId,

string appVersion,

AuthenticationValues authValues,

string regionCode,

bool getLobbyStatistics) [virtual]

Sends this app's appId and appVersion to identify this application server side. This is an async request which
triggers a OnOperationResponse() call.

This operation makes use of encryption, if that is established before. See: EstablishEncryption(). Check encryption
with IsEncryptionAvailable. This operation is allowed only once per connection (multiple calls will have ErrorCode
!= Ok).

Parameters

appId Your application's name or ID to authenticate. This is assigned by Photon Cloud
(webpage).

appVersion The client's version (clients with differing client appVersions are separated and players
don't meet).

authValues Contains all values relevant for authentication. Even without account system (external
Custom Auth), the clients are allowed to identify themselves.

regionCode Optional region code, if the client should connect to a specific Photon Cloud Region.

getLobbyStatistics Set to true on Master Server to receive "Lobby Statistics" events.

Returns

If the operation could be sent (has to be connected).

8.56.3.2 OpAuthenticateOnce()

virtual bool OpAuthenticateOnce (

string appId,

string appVersion,

AuthenticationValues authValues,

string regionCode,

EncryptionMode encryptionMode,

ConnectionProtocol expectedProtocol) [virtual]

Sends this app's appId and appVersion to identify this application server side. This is an async request which
triggers a OnOperationResponse() call.

This operation makes use of encryption, if that is established before. See: EstablishEncryption(). Check encryption
with IsEncryptionAvailable. This operation is allowed only once per connection (multiple calls will have ErrorCode
!= Ok).

Generated by Doxygen

194 Class Documentation

Parameters

appId Your application's name or ID to authenticate. This is assigned by Photon Cloud
(webpage).

appVersion The client's version (clients with differing client appVersions are separated and players
don't meet).

authValues Optional authentication values. The client can set no values or a UserId or some
parameters for Custom Authentication by a server.

regionCode Optional region code, if the client should connect to a specific Photon Cloud Region.

encryptionMode

expectedProtocol

Returns

If the operation could be sent (has to be connected).

8.56.3.3 OpChangeGroups()

virtual bool OpChangeGroups (

byte[] groupsToRemove,

byte[] groupsToAdd) [virtual]

Operation to handle this client's interest groups (for events in room).

Note the difference between passing null and byte[0]: null won't add/remove any groups. byte[0] will add/remove all
(existing) groups. First, removing groups is executed. This way, you could leave all groups and join only the ones
provided.

Changes become active not immediately but when the server executes this operation (approximately RTT/2).

Parameters

groupsToRemove Groups to remove from interest. Null will not remove any. A byte[0] will remove all.

groupsToAdd Groups to add to interest. Null will not add any. A byte[0] will add all current.

Returns

If operation could be enqueued for sending. Sent when calling: Service or SendOutgoingCommands.

8.56.3.4 OpCreateRoom()

virtual bool OpCreateRoom (

EnterRoomParams opParams) [virtual]

Creates a room (on either Master or Game Server). The OperationResponse depends on the server the peer is
connected to: Master will return a Game Server to connect to. Game Server will return the joined Room's data.
This is an async request which triggers a OnOperationResponse() call.

If the room is already existing, the OperationResponse will have a returnCode of ErrorCode.GameAlreadyExists.

Generated by Doxygen

8.56 LoadBalancingPeer Class Reference 195

8.56.3.5 OpFindFriends()

virtual bool OpFindFriends (

string[] friendsToFind,

FindFriendsOptions options = null) [virtual]

Request the rooms and online status for a list of friends (each client must set a unique username via Op←↩

Authenticate).

Used on Master Server to find the rooms played by a selected list of users. Users identify themselves by using
OpAuthenticate with a unique user ID. The list of user IDs must be fetched from some other source (not provided by
Photon).

The server response includes 2 arrays of info (each index matching a friend from the request):
ParameterCode.FindFriendsResponseOnlineList = bool[] of online states
ParameterCode.FindFriendsResponseRoomIdList = string[] of room names (empty string if not in a room)

The options may be used to define which state a room must match to be returned.

Parameters

friendsToFind Array of friend's names (make sure they are unique).

options Options that affect the result of the FindFriends operation.

Returns

If the operation could be sent (requires connection).

8.56.3.6 OpGetGameList()

virtual bool OpGetGameList (

TypedLobby lobby,

string queryData) [virtual]

Gets a list of games matching a SQL-like where clause.

Operation is only available in lobbies of type SqlLobby. This is an async request which triggers a OnOperation←↩

Response() call. Returned game list is stored in RoomInfoList.

https://doc.photonengine.com/en-us/realtime/current/reference/matchmaking-and-lobby::sql_lobby_type

Parameters

lobby The lobby to query. Has to be of type SqlLobby.

queryData The sql query statement.

Returns

If the operation could be sent (has to be connected).

Generated by Doxygen

196 Class Documentation

8.56.3.7 OpJoinLobby()

virtual bool OpJoinLobby (

TypedLobby lobby = null) [virtual]

Joins the lobby on the Master Server, where you get a list of RoomInfos of currently open rooms. This is an async
request which triggers a OnOperationResponse() call.

Parameters

lobby The lobby join to.

Returns

If the operation could be sent (has to be connected).

8.56.3.8 OpJoinRandomOrCreateRoom()

virtual bool OpJoinRandomOrCreateRoom (

OpJoinRandomRoomParams opJoinRandomRoomParams,

EnterRoomParams createRoomParams) [virtual]

Only used on the Master Server. It will assign a game server and room to join-or-create. On the Game Server, the
OpJoin is used with option "create if not exists".

8.56.3.9 OpJoinRandomRoom()

virtual bool OpJoinRandomRoom (

OpJoinRandomRoomParams opJoinRandomRoomParams) [virtual]

Operation to join a random, available room. Overloads take additional player properties. This is an async request
which triggers a OnOperationResponse() call. If all rooms are closed or full, the OperationResponse will have a
returnCode of ErrorCode.NoRandomMatchFound. If successful, the OperationResponse contains a gameserver
address and the name of some room.

Returns

If the operation could be sent currently (requires connection).

Generated by Doxygen

8.56 LoadBalancingPeer Class Reference 197

8.56.3.10 OpJoinRoom()

virtual bool OpJoinRoom (

EnterRoomParams opParams) [virtual]

Joins a room by name or creates new room if room with given name not exists. The OperationResponse depends
on the server the peer is connected to: Master will return a Game Server to connect to. Game Server will return the
joined Room's data. This is an async request which triggers a OnOperationResponse() call.

If the room is not existing (anymore), the OperationResponse will have a returnCode of ErrorCode.GameDoesNotExist.
Other possible ErrorCodes are: GameClosed, GameFull.

Returns

If the operation could be sent (requires connection).

8.56.3.11 OpLeaveLobby()

virtual bool OpLeaveLobby () [virtual]

Leaves the lobby on the Master Server. This is an async request which triggers a OnOperationResponse() call.

Returns

If the operation could be sent (requires connection).

8.56.3.12 OpLeaveRoom()

virtual bool OpLeaveRoom (

bool becomeInactive,

bool sendAuthCookie = false) [virtual]

Leaves a room with option to come back later or "for good".

Parameters

becomeInactive Async games can be re-joined (loaded) later on. Set to false, if you want to abandon a
game entirely.

sendAuthCookie WebFlag: Securely transmit the encrypted object AuthCookie to the web service in
PathLeave webhook when available

Returns

If the opteration can be send currently.

Generated by Doxygen

198 Class Documentation

8.56.3.13 OpRaiseEvent()

virtual bool OpRaiseEvent (

byte eventCode,

object customEventContent,

RaiseEventOptions raiseEventOptions,

SendOptions sendOptions) [virtual]

Send an event with custom code/type and any content to the other players in the same room.

This override explicitly uses another parameter order to not mix it up with the implementation for Hashtable only.

Parameters

eventCode Identifies this type of event (and the content). Your game's event codes can start with 0.

customEventContent Any serializable datatype (including Hashtable like the other OpRaiseEvent overloads).

raiseEventOptions Contains (slightly) less often used options. If you pass null, the default options will be used.

sendOptions Send options for reliable, encryption etc

Returns

If operation could be enqueued for sending. Sent when calling: Service or SendOutgoingCommands.

8.56.3.14 OpSettings()

virtual bool OpSettings (

bool receiveLobbyStats) [virtual]

Internally used operation to set some "per server" settings. This is for the Master Server.

Parameters

receiveLobbyStats Set to true, to get Lobby Statistics (lists of existing lobbies).

Returns

False if the operation could not be sent.

8.57 MatchMakingCallbacksContainer Class Reference

Container type for callbacks defined by IMatchmakingCallbacks. See MatchMakingCallbackTargets.

Inherits List< IMatchmakingCallbacks >, and IMatchmakingCallbacks.

Generated by Doxygen

8.57 MatchMakingCallbacksContainer Class Reference 199

Public Member Functions

• MatchMakingCallbacksContainer (LoadBalancingClient client)
• void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

• void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

• void OnCreateRoomFailed (short returnCode, string message)

Called when the server couldn't create a room (OpCreateRoom failed).

• void OnJoinRandomFailed (short returnCode, string message)

Called when a previous OpJoinRandom call failed on the server.

• void OnJoinRoomFailed (short returnCode, string message)

Called when a previous OpJoinRoom call failed on the server.

• void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

• void OnFriendListUpdate (List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.

8.57.1 Detailed Description

Container type for callbacks defined by IMatchmakingCallbacks. See MatchMakingCallbackTargets.

While the interfaces of callbacks wrap up the methods that will be called, the container classes implement a simple
way to call a method on all registered objects.

8.57.2 Member Function Documentation

8.57.2.1 OnCreatedRoom()

void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see OpCreateRoom).

As any client might close (or drop connection) anytime, there is a chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal", implement OnMasterClientSwitched() and make each new
MasterClient check the room's state.

Implements IMatchmakingCallbacks.

Generated by Doxygen

200 Class Documentation

8.57.2.2 OnCreateRoomFailed()

void OnCreateRoomFailed (

short returnCode,

string message)

Called when the server couldn't create a room (OpCreateRoom failed).

Creating a room may fail for various reasons. Most often, the room already exists (roomname in use) or the
RoomOptions clash and it's impossible to create the room.

When creating a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Generated by Doxygen

8.57 MatchMakingCallbacksContainer Class Reference 201

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.57.2.3 OnFriendListUpdate()

void OnFriendListUpdate (

List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.

After calling OpFindFriends, the Master Server will cache the friend list and send updates to the friend list. The
friends includes the name, userId, online state and the room (if any) for each requested user/friend.

Use the friendList to update your UI and store it, if the UI should highlight changes.

Implements IMatchmakingCallbacks.

8.57.2.4 OnJoinedRoom()

void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Implements IMatchmakingCallbacks.

8.57.2.5 OnJoinRandomFailed()

void OnJoinRandomFailed (

short returnCode,

string message)

Called when a previous OpJoinRandom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

This operation is only ever sent to the Master Server. Once a room is found by the Master Server, the client will
head off to the designated Game Server and use the operation Join on the Game Server.

When using multiple lobbies (via OpJoinLobby or a TypedLobby parameter), another lobby might have more/fitting
rooms.

Generated by Doxygen

202 Class Documentation

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.57.2.6 OnJoinRoomFailed()

void OnJoinRoomFailed (

short returnCode,

string message)

Called when a previous OpJoinRoom call failed on the server.

Joining a room may fail for various reasons. Most often, the room is full or does not exist anymore (due to someone
else being faster or closing the room).

When joining a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.57.2.7 OnLeftRoom()

void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Implements IMatchmakingCallbacks.

Generated by Doxygen

8.58 MonoBehaviourPun Class Reference 203

8.58 MonoBehaviourPun Class Reference

This class adds the property photonView, while logging a warning when your game still uses the networkView.

Inherits MonoBehaviour.

Inherited by MonoBehaviourPunCallbacks, PhotonAnimatorView, PhotonRigidbody2DView, PhotonRigidbodyView,
PhotonTransformView, PhotonTransformViewClassic, MoveByKeys, OnClickDestroy, OnClickRpc, and SmoothSyncMovement.

Properties

• PhotonView photonView [get]

A cached reference to a PhotonView on this GameObject.

8.58.1 Detailed Description

This class adds the property photonView, while logging a warning when your game still uses the networkView.

8.58.2 Property Documentation

8.58.2.1 photonView

PhotonView photonView [get]

A cached reference to a PhotonView on this GameObject.

If you intend to work with a PhotonView in a script, it's usually easier to write this.photonView.

If you intend to remove the PhotonView component from the GameObject but keep this Photon.MonoBehaviour,
avoid this reference or modify this code to use PhotonView.Get(obj) instead.

8.59 MonoBehaviourPunCallbacks Class Reference

This class provides a .photonView and all callbacks/events that PUN can call. Override the events/methods you
want to use.

Inherits MonoBehaviourPun, IConnectionCallbacks, IMatchmakingCallbacks, IInRoomCallbacks, ILobbyCallbacks,
IWebRpcCallback, and IErrorInfoCallback.

Inherited by ConnectAndJoinRandom, CountdownTimer, PlayerNumbering, PunTeams, and PunTurnManager.

Generated by Doxygen

204 Class Documentation

Public Member Functions

• virtual void OnEnable ()
• virtual void OnDisable ()
• virtual void OnConnected ()

Called to signal that the raw connection got established but before the client can call operation on the server.
• virtual void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.
• virtual void OnMasterClientSwitched (Player newMasterClient)

Called after switching to a new MasterClient when the current one leaves.
• virtual void OnCreateRoomFailed (short returnCode, string message)

Called when the server couldn't create a room (OpCreateRoom failed).
• virtual void OnJoinRoomFailed (short returnCode, string message)

Called when a previous OpJoinRoom call failed on the server.
• virtual void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.
• virtual void OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.
• virtual void OnLeftLobby ()

Called after leaving a lobby.
• virtual void OnDisconnected (DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or intentional
• virtual void OnRegionListReceived (RegionHandler regionHandler)

Called when the Name Server provided a list of regions for your title.
• virtual void OnRoomListUpdate (List< RoomInfo > roomList)

Called for any update of the room-listing while in a lobby (InLobby) on the Master Server.
• virtual void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.
• virtual void OnPlayerEnteredRoom (Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.
• virtual void OnPlayerLeftRoom (Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.
• virtual void OnJoinRandomFailed (short returnCode, string message)

Called when a previous OpJoinRandom call failed on the server.
• virtual void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.
• virtual void OnRoomPropertiesUpdate (Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

• virtual void OnPlayerPropertiesUpdate (Player targetPlayer, Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].
• virtual void OnFriendListUpdate (List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.
• virtual void OnCustomAuthenticationResponse (Dictionary< string, object > data)

Called when your Custom Authentication service responds with additional data.
• virtual void OnCustomAuthenticationFailed (string debugMessage)

Called when the custom authentication failed. Followed by disconnect!
• virtual void OnWebRpcResponse (OperationResponse response)

Called when the response to a WebRPC is available. See LoadBalancingClient.OpWebRpc.
• virtual void OnLobbyStatisticsUpdate (List< TypedLobbyInfo > lobbyStatistics)

Called when the Master Server sent an update for the Lobby Statistics.
• virtual void OnErrorInfo (ErrorInfo errorInfo)

Called when the client receives an event from the server indicating that an error happened there.

Generated by Doxygen

8.59 MonoBehaviourPunCallbacks Class Reference 205

Additional Inherited Members

8.59.1 Detailed Description

This class provides a .photonView and all callbacks/events that PUN can call. Override the events/methods you
want to use.

By extending this class, you can implement individual methods as override.

Do not add new
MonoBehaviour.OnEnable

or
MonoBehaviour.OnDisable

Instead, you should override those and call
base.OnEnable

and
base.OnDisable

.

Visual Studio and MonoDevelop should provide the list of methods when you begin typing "override". Your imple-
mentation does not have to call "base.method()".

This class implements all callback interfaces and extends Photon.Pun.MonoBehaviourPun.

8.59.2 Member Function Documentation

8.59.2.1 OnConnected()

virtual void OnConnected () [virtual]

Called to signal that the raw connection got established but before the client can call operation on the server.

After the (low level transport) connection is established, the client will automatically send the Authentication opera-
tion, which needs to get a response before the client can call other operations.

Your logic should wait for either: OnRegionListReceived or OnConnectedToMaster.

This callback is useful to detect if the server can be reached at all (technically). Most often, it's enough to implement
OnDisconnected().

This is not called for transitions from the masterserver to game servers.

Implements IConnectionCallbacks.

Generated by Doxygen

206 Class Documentation

8.59.2.2 OnConnectedToMaster()

virtual void OnConnectedToMaster () [virtual]

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

The list of available rooms won't become available unless you join a lobby via LoadBalancingClient.OpJoinLobby.
You can join rooms and create them even without being in a lobby. The default lobby is used in that case.

Implements IConnectionCallbacks.

Reimplemented in ConnectAndJoinRandom.

8.59.2.3 OnCreatedRoom()

virtual void OnCreatedRoom () [virtual]

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see OpCreateRoom).

As any client might close (or drop connection) anytime, there is a chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal", implement OnMasterClientSwitched() and make each new
MasterClient check the room's state.

Implements IMatchmakingCallbacks.

8.59.2.4 OnCreateRoomFailed()

virtual void OnCreateRoomFailed (

short returnCode,

string message) [virtual]

Called when the server couldn't create a room (OpCreateRoom failed).

The most common cause to fail creating a room, is when a title relies on fixed room-names and the room already
exists.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

Generated by Doxygen

8.59 MonoBehaviourPunCallbacks Class Reference 207

8.59.2.5 OnCustomAuthenticationFailed()

virtual void OnCustomAuthenticationFailed (

string debugMessage) [virtual]

Called when the custom authentication failed. Followed by disconnect!

Custom Authentication can fail due to user-input, bad tokens/secrets. If authentication is successful, this method is
not called. Implement OnJoinedLobby() or OnConnectedToMaster() (as usual).

During development of a game, it might also fail due to wrong configuration on the server side. In those cases,
logging the debugMessage is very important.

Unless you setup a custom authentication service for your app (in the Dashboard), this won't be called!

Parameters

debugMessage Contains a debug message why authentication failed. This has to be fixed during development.

Implements IConnectionCallbacks.

8.59.2.6 OnCustomAuthenticationResponse()

virtual void OnCustomAuthenticationResponse (

Dictionary< string, object > data) [virtual]

Called when your Custom Authentication service responds with additional data.

Custom Authentication services can include some custom data in their response. When present, that data is made
available in this callback as Dictionary. While the keys of your data have to be strings, the values can be either string
or a number (in Json). You need to make extra sure, that the value type is the one you expect. Numbers become
(currently) int64.

Example: void OnCustomAuthenticationResponse(Dictionary<string, object> data) { ... }

https://doc.photonengine.com/en-us/realtime/current/reference/custom-authentication

Implements IConnectionCallbacks.

8.59.2.7 OnDisconnected()

virtual void OnDisconnected (

DisconnectCause cause) [virtual]

Called after disconnecting from the Photon server. It could be a failure or intentional

The reason for this disconnect is provided as DisconnectCause.

Implements IConnectionCallbacks.

Reimplemented in ConnectAndJoinRandom.

Generated by Doxygen

208 Class Documentation

8.59.2.8 OnErrorInfo()

virtual void OnErrorInfo (

ErrorInfo errorInfo) [virtual]

Called when the client receives an event from the server indicating that an error happened there.

In most cases this could be either:

1. an error from webhooks plugin (if HasErrorInfo is enabled), read more here: https://doc.photonengine.←↩

com/en-us/realtime/current/gameplay/web-extensions/webhooks#options

2. an error sent from a custom server plugin via PluginHost.BroadcastErrorInfoEvent, see example here←↩

: https://doc.photonengine.com/en-us/server/current/plugins/manual#handling_http_response

3. an error sent from the server, for example, when the limit of cached events has been exceeded in the room
(all clients will be disconnected and the room will be closed in this case) read more here: https://doc.←↩

photonengine.com/en-us/realtime/current/gameplay/cached-events#special_considerations

Parameters

errorInfo object containing information about the error

Implements IErrorInfoCallback.

8.59.2.9 OnFriendListUpdate()

virtual void OnFriendListUpdate (

List< FriendInfo > friendList) [virtual]

Called when the server sent the response to a FindFriends request.

After calling OpFindFriends, the Master Server will cache the friend list and send updates to the friend list. The
friends includes the name, userId, online state and the room (if any) for each requested user/friend.

Use the friendList to update your UI and store it, if the UI should highlight changes.

Implements IMatchmakingCallbacks.

8.59.2.10 OnJoinedLobby()

virtual void OnJoinedLobby () [virtual]

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.

While in the lobby, the roomlist is automatically updated in fixed intervals (which you can't modify in the public cloud).
The room list gets available via OnRoomListUpdate.

Implements ILobbyCallbacks.

Reimplemented in ConnectAndJoinRandom.

Generated by Doxygen

8.59 MonoBehaviourPunCallbacks Class Reference 209

8.59.2.11 OnJoinedRoom()

virtual void OnJoinedRoom () [virtual]

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Implements IMatchmakingCallbacks.

Reimplemented in ConnectAndJoinRandom, PlayerNumbering, and PunTeams.

8.59.2.12 OnJoinRandomFailed()

virtual void OnJoinRandomFailed (

short returnCode,

string message) [virtual]

Called when a previous OpJoinRandom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

When using multiple lobbies (via OpJoinLobby or a TypedLobby parameter), another lobby might have more/fitting
rooms.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

Reimplemented in ConnectAndJoinRandom.

8.59.2.13 OnJoinRoomFailed()

virtual void OnJoinRoomFailed (

short returnCode,

string message) [virtual]

Called when a previous OpJoinRoom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

Generated by Doxygen

210 Class Documentation

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.59.2.14 OnLeftLobby()

virtual void OnLeftLobby () [virtual]

Called after leaving a lobby.

When you leave a lobby, OpCreateRoom and OpJoinRandomRoom automatically refer to the default lobby.

Implements ILobbyCallbacks.

8.59.2.15 OnLeftRoom()

virtual void OnLeftRoom () [virtual]

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Implements IMatchmakingCallbacks.

Reimplemented in PlayerNumbering, and PunTeams.

8.59.2.16 OnLobbyStatisticsUpdate()

virtual void OnLobbyStatisticsUpdate (

List< TypedLobbyInfo > lobbyStatistics) [virtual]

Called when the Master Server sent an update for the Lobby Statistics.

This callback has two preconditions: EnableLobbyStatistics must be set to true, before this client connects. And the
client has to be connected to the Master Server, which is providing the info about lobbies.

Implements ILobbyCallbacks.

Generated by Doxygen

8.59 MonoBehaviourPunCallbacks Class Reference 211

8.59.2.17 OnMasterClientSwitched()

virtual void OnMasterClientSwitched (

Player newMasterClient) [virtual]

Called after switching to a new MasterClient when the current one leaves.

This is not called when this client enters a room. The former MasterClient is still in the player list when this method
get called.

Implements IInRoomCallbacks.

8.59.2.18 OnPlayerEnteredRoom()

virtual void OnPlayerEnteredRoom (

Player newPlayer) [virtual]

Called when a remote player entered the room. This Player is already added to the playerlist.

If your game starts with a certain number of players, this callback can be useful to check the Room.playerCount and
find out if you can start.

Implements IInRoomCallbacks.

Reimplemented in PlayerNumbering, and PunTeams.

8.59.2.19 OnPlayerLeftRoom()

virtual void OnPlayerLeftRoom (

Player otherPlayer) [virtual]

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

If another player leaves the room or if the server detects a lost connection, this callback will be used to notify your
game logic.

Depending on the room's setup, players may become inactive, which means they may return and retake their spot
in the room. In such cases, the Player stays in the Room.Players dictionary.

If the player is not just inactive, it gets removed from the Room.Players dictionary, before the callback is called.

Implements IInRoomCallbacks.

Reimplemented in PlayerNumbering, and PunTeams.

8.59.2.20 OnPlayerPropertiesUpdate()

virtual void OnPlayerPropertiesUpdate (

Player targetPlayer,

Hashtable changedProps) [virtual]

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

Changing properties must be done by Player.SetCustomProperties, which causes this callback locally, too.

Generated by Doxygen

212 Class Documentation

Parameters

targetPlayer Contains Player that changed.

changedProps Contains the properties that changed.

Implements IInRoomCallbacks.

Reimplemented in PlayerNumbering, and PunTeams.

8.59.2.21 OnRegionListReceived()

virtual void OnRegionListReceived (

RegionHandler regionHandler) [virtual]

Called when the Name Server provided a list of regions for your title.

Check the RegionHandler class description, to make use of the provided values.

Parameters

regionHandler The currently used RegionHandler.

Implements IConnectionCallbacks.

8.59.2.22 OnRoomListUpdate()

virtual void OnRoomListUpdate (

List< RoomInfo > roomList) [virtual]

Called for any update of the room-listing while in a lobby (InLobby) on the Master Server.

Each item is a RoomInfo which might include custom properties (provided you defined those as lobby-listed when
creating a room). Not all types of lobbies provide a listing of rooms to the client. Some are silent and specialized for
server-side matchmaking.

Implements ILobbyCallbacks.

8.59.2.23 OnRoomPropertiesUpdate()

virtual void OnRoomPropertiesUpdate (

Hashtable propertiesThatChanged) [virtual]

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

Since v1.25 this method has one parameter: Hashtable propertiesThatChanged.
Changing properties must be done by Room.SetCustomProperties, which causes this callback locally, too.

Generated by Doxygen

8.60 MoveByKeys Class Reference 213

Parameters

propertiesThatChanged

Implements IInRoomCallbacks.

Reimplemented in PunTurnManager, and CountdownTimer.

8.59.2.24 OnWebRpcResponse()

virtual void OnWebRpcResponse (

OperationResponse response) [virtual]

Called when the response to a WebRPC is available. See LoadBalancingClient.OpWebRpc.

Important: The response.ReturnCode is 0 if Photon was able to reach your web-service.
The content of the response is what your web-service sent. You can create a WebRpcResponse from it.
Example: WebRpcResponse webResponse = new WebRpcResponse(operationResponse);

Please note: Class OperationResponse is in a namespace which needs to be "used":
using ExitGames.Client.Photon; // includes OperationResponse (and other classes)

public void OnWebRpcResponse(OperationResponse response) { Debug.LogFormat("WebRPC operation re-
sponse {0}", response.ToStringFull()); switch (response.ReturnCode) { case ErrorCode.Ok: WebRpcResponse
webRpcResponse = new WebRpcResponse(response); Debug.LogFormat("Parsed WebRPC response {0}",
response.ToStringFull()); if (string.IsNullOrEmpty(webRpcResponse.Name)) { Debug.LogError("Unexpected←↩

: WebRPC response did not contain WebRPC method name"); } if (webRpcResponse.ResultCode == 0) //
success { switch (webRpcResponse.Name) { // todo: add your code here case GetGameListWebRpcMethod←↩

Name: // example // ... break; } } else if (webRpcResponse.ResultCode == -1) { Debug.LogErrorFormat("Web
server did not return ResultCode for WebRPC method=\"{0}", Message={1}", webRpcResponse.Name, web←↩

RpcResponse.Message); } else { Debug.LogErrorFormat("Web server returned ResultCode={0} for WebRPC
method=\"{1}", Message={2}", webRpcResponse.ResultCode, webRpcResponse.Name, webRpcResponse.←↩

Message); } break; case ErrorCode.ExternalHttpCallFailed: // web service unreachable Debug.LogErrorFormat("←↩

WebRPC call failed as request could not be sent to the server. {0}", response.DebugMessage); break; case
ErrorCode.HttpLimitReached: // too many WebRPCs in a short period of time // the debug message should contain
the limit exceeded Debug.LogErrorFormat("WebRPCs rate limit exceeded: {0}", response.DebugMessage); break;
case ErrorCode.InvalidOperation: // WebRPC not configured at all OR not configured properly OR trying to send
on name server if (PhotonNetwork.Server == ServerConnection.NameServer) { Debug.LogErrorFormat("WebRPC
not supported on NameServer. {0}", response.DebugMessage); } else { Debug.LogErrorFormat("WebRPC not
properly configured or not configured at all. {0}", response.DebugMessage); } break; default: // other unknown error,
unexpected Debug.LogErrorFormat("Unexpected error, {0} {1}", response.ReturnCode, response.DebugMessage);
break; } }

Implements IWebRpcCallback.

8.60 MoveByKeys Class Reference

Very basic component to move a GameObject by WASD and Space.

Inherits MonoBehaviourPun.

Generated by Doxygen

214 Class Documentation

Public Member Functions

• void Start ()
• void FixedUpdate ()

Public Attributes

• float Speed = 10f
• float JumpForce = 200f
• float JumpTimeout = 0.5f

Additional Inherited Members

8.60.1 Detailed Description

Very basic component to move a GameObject by WASD and Space.

Requires a PhotonView. Disables itself on GameObjects that are not owned on Start.

Speed affects movement-speed. JumpForce defines how high the object "jumps". JumpTimeout defines after how
many seconds you can jump again.

8.61 NestedComponentUtilities Class Reference

Static Public Member Functions

• static T EnsureRootComponentExists< T, NestedT > (this Transform transform)
• static T GetParentComponent< T > (this Transform t)

Find T on supplied transform or any parent. Unlike GetComponentInParent, GameObjects do not need to be active
to be found.

• static void GetNestedComponentsInParents< T > (this Transform t, List< T > list)

Returns all T found between the child transform and its root. Order in List from child to parent, with the root/parent
most being last.

• static T GetNestedComponentInChildren< T, NestedT > (this Transform t, bool includeInactive)
• static T GetNestedComponentInParent< T, NestedT > (this Transform t)

Same as GetComponentInParent, but will always include inactive objects in search.
• static T GetNestedComponentInParents< T, NestedT > (this Transform t)

UNTESTED
• static void GetNestedComponentsInParents< T, NestedT > (this Transform t, List< T > list)

Finds components of type T on supplied transform, and every parent above that node, inclusively stopping on node
StopSearchOnT component.

• static List< T > GetNestedComponentsInChildren< T, NestedT > (this Transform t, List< T > list, bool
includeInactive=true)

Same as GetComponentsInChildren, but will not recurse into children with component of the DontRecurseOnT type.
This allows nesting of PhotonViews/NetObjects to be respected.

• static List< T > GetNestedComponentsInChildren< T > (this Transform t, List< T > list, bool include←↩

Inactive=true, params System.Type[] stopOn)

Same as GetComponentsInChildren, but will not recurse into children with component of the DontRecurseOnT type.
This allows nesting of PhotonViews/NetObjects to be respected.

• static void GetNestedComponentsInChildren< T, SearchT, NestedT > (this Transform t, bool includeInactive,
List< T > list)

Same as GetComponentsInChildren, but will not recurse into children with component of the NestedT type. This
allows nesting of PhotonViews/NetObjects to be respected.

Generated by Doxygen

8.61 NestedComponentUtilities Class Reference 215

Static Public Attributes

• static Dictionary< System.Type, ICollection > searchLists = new Dictionary<System.Type, ICollection>()

8.61.1 Member Function Documentation

8.61.1.1 GetNestedComponentInParent< T, NestedT >()

static T GetNestedComponentInParent< T, NestedT > (

this Transform t) [static]

Same as GetComponentInParent, but will always include inactive objects in search.

Template Parameters

T
DontRecurseOnT

Parameters

t

Returns

Type Constraints

T : class

NestedT : class

8.61.1.2 GetNestedComponentInParents< T, NestedT >()

static T GetNestedComponentInParents< T, NestedT > (

this Transform t) [static]

UNTESTED

Template Parameters

T
StopSearchOnT

Generated by Doxygen

216 Class Documentation

Parameters

t

Returns

Type Constraints

T : class

NestedT : class

8.61.1.3 GetNestedComponentsInChildren< T >()

static List<T> GetNestedComponentsInChildren< T > (

this Transform t,

List< T > list,

bool includeInactive = true,

params System.Type[] stopOn) [static]

Same as GetComponentsInChildren, but will not recurse into children with component of the DontRecurseOnT type.
This allows nesting of PhotonViews/NetObjects to be respected.

Template Parameters

T

Parameters

t
list Pass null and a reused list will be used. Consume immediately.

Type Constraints

T : class

8.61.1.4 GetNestedComponentsInChildren< T, NestedT >()

static List<T> GetNestedComponentsInChildren< T, NestedT > (

this Transform t,

List< T > list,

bool includeInactive = true) [static]

Same as GetComponentsInChildren, but will not recurse into children with component of the DontRecurseOnT type.
This allows nesting of PhotonViews/NetObjects to be respected.

Generated by Doxygen

8.61 NestedComponentUtilities Class Reference 217

Template Parameters

T

Parameters

t
list Pass null and a reused list will be used. Consume immediately.

Type Constraints

T : class

NestedT : class

8.61.1.5 GetNestedComponentsInChildren< T, SearchT, NestedT >()

static void GetNestedComponentsInChildren< T, SearchT, NestedT > (

this Transform t,

bool includeInactive,

List< T > list) [static]

Same as GetComponentsInChildren, but will not recurse into children with component of the NestedT type. This
allows nesting of PhotonViews/NetObjects to be respected.

Template Parameters

T Cast found components to this type. Typically Component, but any other class/interface
will work as long as they are assignable from SearchT.

SearchT Find components of this class or interface type.

DontRecurseOnT

Parameters

t
includeInactive
list

Returns

Type Constraints

T : class

SearchT : class

Generated by Doxygen

218 Class Documentation

8.61.1.6 GetNestedComponentsInParents< T >()

static void GetNestedComponentsInParents< T > (

this Transform t,

List< T > list) [static]

Returns all T found between the child transform and its root. Order in List from child to parent, with the root/parent
most being last.

Parameters

t

Returns

Type Constraints

T : Component

8.61.1.7 GetNestedComponentsInParents< T, NestedT >()

static void GetNestedComponentsInParents< T, NestedT > (

this Transform t,

List< T > list) [static]

Finds components of type T on supplied transform, and every parent above that node, inclusively stopping on node
StopSearchOnT component.

Template Parameters

T
StopSearchOnT

Parameters

t
list

Returns

Type Constraints

T : class

NestedT : class

Generated by Doxygen

8.62 OnClickDestroy Class Reference 219

8.61.1.8 GetParentComponent< T >()

static T GetParentComponent< T > (

this Transform t) [static]

Find T on supplied transform or any parent. Unlike GetComponentInParent, GameObjects do not need to be active
to be found.

Type Constraints

T : Component

8.62 OnClickDestroy Class Reference

Destroys the networked GameObject either by PhotonNetwork.Destroy or by sending an RPC which calls Object.←↩

Destroy().

Inherits MonoBehaviourPun, and IPointerClickHandler.

Public Member Functions

• IEnumerator DestroyRpc ()

Public Attributes

• PointerEventData.InputButton Button
• KeyCode ModifierKey
• bool DestroyByRpc

Additional Inherited Members

8.62.1 Detailed Description

Destroys the networked GameObject either by PhotonNetwork.Destroy or by sending an RPC which calls Object.←↩

Destroy().

Using an RPC to Destroy a GameObject is typically a bad idea. It allows any player to Destroy a GameObject and
may cause errors.

A client has to clean up the server's event-cache, which contains events for Instantiate and buffered RPCs related
to the GO.

A buffered RPC gets cleaned up when the sending player leaves the room, so players joining later won't get those
buffered RPCs. This in turn, may mean they don't destroy the GO due to coming later.

Vice versa, a GameObject Instantiate might get cleaned up when the creating player leaves a room. This way, the
GameObject that a RPC targets might become lost.

It makes sense to test those cases. Many are not breaking errors and you just have to be aware of them.

Gets OnClick() calls by Unity's IPointerClickHandler. Needs a PhysicsRaycaster on the camera. See: https←↩

://docs.unity3d.com/ScriptReference/EventSystems.IPointerClickHandler.html

Generated by Doxygen

220 Class Documentation

8.63 OnClickInstantiate Class Reference

Instantiates a networked GameObject on click.

Inherits MonoBehaviour, and IPointerClickHandler.

Public Types

• enum InstantiateOption

Public Attributes

• PointerEventData.InputButton Button
• KeyCode ModifierKey
• GameObject Prefab

8.63.1 Detailed Description

Instantiates a networked GameObject on click.

Gets OnClick() calls by Unity's IPointerClickHandler. Needs a PhysicsRaycaster on the camera. See: https←↩

://docs.unity3d.com/ScriptReference/EventSystems.IPointerClickHandler.html

8.64 OnClickRpc Class Reference

This component will instantiate a network GameObject when in a room and the user click on that component's
GameObject. Uses PhysicsRaycaster for positioning.

Inherits MonoBehaviourPun, and IPointerClickHandler.

Public Member Functions

• void ClickRpc ()
• IEnumerator ClickFlash ()

Public Attributes

• PointerEventData.InputButton Button
• KeyCode ModifierKey
• RpcTarget Target

Additional Inherited Members

8.64.1 Detailed Description

This component will instantiate a network GameObject when in a room and the user click on that component's
GameObject. Uses PhysicsRaycaster for positioning.

Generated by Doxygen

8.65 OnEscapeQuit Class Reference 221

8.65 OnEscapeQuit Class Reference

This component will quit the application when escape key is pressed

Inherits MonoBehaviour.

Public Member Functions

• void Update ()

8.65.1 Detailed Description

This component will quit the application when escape key is pressed

8.66 OnJoinedInstantiate Class Reference

This component will instantiate a network GameObject when a room is joined

Inherits MonoBehaviour, and IMatchmakingCallbacks.

Public Types

• enum SpawnSequence

Public Member Functions

• virtual void OnEnable ()
• virtual void OnDisable ()
• virtual void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

• virtual void SpawnObjects ()
• virtual void DespawnObjects (bool localOnly)

Destroy all objects that have been spawned by this component for this client.

• virtual void OnFriendListUpdate (List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.

• virtual void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

• virtual void OnCreateRoomFailed (short returnCode, string message)

Called when the server couldn't create a room (OpCreateRoom failed).

• virtual void OnJoinRoomFailed (short returnCode, string message)

Called when a previous OpJoinRoom call failed on the server.

• virtual void OnJoinRandomFailed (short returnCode, string message)

Called when a previous OpJoinRandom call failed on the server.

• virtual void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

• virtual void GetSpawnPoint (out Vector3 spawnPos, out Quaternion spawnRot)

Gets the next SpawnPoint from the list using the SpawnSequence, and applies RandomOffset (if used) to the trans-
form matrix. Override this method with any custom code for coming up with a spawn location. This method is used
by AutoSpawn.

Generated by Doxygen

222 Class Documentation

Public Attributes

• SpawnSequence Sequence = SpawnSequence.Connection
• List< Transform > SpawnPoints = new List<Transform>(1) { null }
• bool UseRandomOffset = true
• float RandomOffset = 2.0f
• bool ClampY = true
• List< GameObject > PrefabsToInstantiate = new List<GameObject>(1) { null }
• bool AutoSpawnObjects = true
• Stack< GameObject > SpawnedObjects = new Stack<GameObject>()

Protected Member Functions

• virtual Transform GetSpawnPoint ()

Get the transform of the next SpawnPoint from the list, selected using the SpawnSequence setting. RandomOffset
is not applied, only the transform of the SpawnPoint is returned. Override this method to change how Spawn Point
transform is selected. Return the transform you want to use as a spawn point.

• virtual Vector3 GetRandomOffset ()

When UseRandomeOffset is enabled, this method is called to produce a Vector3 offset. The default implementation
clamps the Y value to zero. You may override this with your own implementation.

Protected Attributes

• int spawnedAsActorId
• int lastUsedSpawnPointIndex = -1

8.66.1 Detailed Description

This component will instantiate a network GameObject when a room is joined

8.66.2 Member Function Documentation

8.66.2.1 DespawnObjects()

virtual void DespawnObjects (

bool localOnly) [virtual]

Destroy all objects that have been spawned by this component for this client.

Parameters

localOnly Use Object.Destroy rather than PhotonNetwork.Destroy.

Generated by Doxygen

8.66 OnJoinedInstantiate Class Reference 223

8.66.2.2 GetRandomOffset()

virtual Vector3 GetRandomOffset () [protected], [virtual]

When UseRandomeOffset is enabled, this method is called to produce a Vector3 offset. The default implementation
clamps the Y value to zero. You may override this with your own implementation.

8.66.2.3 GetSpawnPoint() [1/2]

virtual Transform GetSpawnPoint () [protected], [virtual]

Get the transform of the next SpawnPoint from the list, selected using the SpawnSequence setting. RandomOffset
is not applied, only the transform of the SpawnPoint is returned. Override this method to change how Spawn Point
transform is selected. Return the transform you want to use as a spawn point.

Returns

8.66.2.4 GetSpawnPoint() [2/2]

virtual void GetSpawnPoint (

out Vector3 spawnPos,

out Quaternion spawnRot) [virtual]

Gets the next SpawnPoint from the list using the SpawnSequence, and applies RandomOffset (if used) to the
transform matrix. Override this method with any custom code for coming up with a spawn location. This method is
used by AutoSpawn.

8.66.2.5 OnCreatedRoom()

virtual void OnCreatedRoom () [virtual]

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see OpCreateRoom).

As any client might close (or drop connection) anytime, there is a chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal", implement OnMasterClientSwitched() and make each new
MasterClient check the room's state.

Implements IMatchmakingCallbacks.

Generated by Doxygen

224 Class Documentation

8.66.2.6 OnCreateRoomFailed()

virtual void OnCreateRoomFailed (

short returnCode,

string message) [virtual]

Called when the server couldn't create a room (OpCreateRoom failed).

Creating a room may fail for various reasons. Most often, the room already exists (roomname in use) or the Room←↩

Options clash and it's impossible to create the room.

When creating a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.66.2.7 OnFriendListUpdate()

virtual void OnFriendListUpdate (

List< FriendInfo > friendList) [virtual]

Called when the server sent the response to a FindFriends request.

After calling OpFindFriends, the Master Server will cache the friend list and send updates to the friend list. The
friends includes the name, userId, online state and the room (if any) for each requested user/friend.

Use the friendList to update your UI and store it, if the UI should highlight changes.

Implements IMatchmakingCallbacks.

8.66.2.8 OnJoinedRoom()

virtual void OnJoinedRoom () [virtual]

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Implements IMatchmakingCallbacks.

Generated by Doxygen

8.66 OnJoinedInstantiate Class Reference 225

8.66.2.9 OnJoinRandomFailed()

virtual void OnJoinRandomFailed (

short returnCode,

string message) [virtual]

Called when a previous OpJoinRandom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

This operation is only ever sent to the Master Server. Once a room is found by the Master Server, the client will
head off to the designated Game Server and use the operation Join on the Game Server.

When using multiple lobbies (via OpJoinLobby or a TypedLobby parameter), another lobby might have more/fitting
rooms.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.66.2.10 OnJoinRoomFailed()

virtual void OnJoinRoomFailed (

short returnCode,

string message) [virtual]

Called when a previous OpJoinRoom call failed on the server.

Joining a room may fail for various reasons. Most often, the room is full or does not exist anymore (due to someone
else being faster or closing the room).

When joining a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

Generated by Doxygen

226 Class Documentation

8.66.2.11 OnLeftRoom()

virtual void OnLeftRoom () [virtual]

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Implements IMatchmakingCallbacks.

8.67 OnPointerOverTooltip Class Reference

Set focus to a given photonView when pointed is over

Inherits MonoBehaviour, IPointerEnterHandler, and IPointerExitHandler.

8.67.1 Detailed Description

Set focus to a given photonView when pointed is over

8.68 OnStartDelete Class Reference

This component will destroy the GameObject it is attached to (in Start()).

Inherits MonoBehaviour.

8.68.1 Detailed Description

This component will destroy the GameObject it is attached to (in Start()).

8.69 OperationCode Class Reference

Class for constants. Contains operation codes.

Generated by Doxygen

8.69 OperationCode Class Reference 227

Static Public Attributes

• const byte ExchangeKeysForEncryption = 250
• const byte Join = 255

(255) Code for OpJoin, to get into a room.

• const byte AuthenticateOnce = 231

(231) Authenticates this peer and connects to a virtual application

• const byte Authenticate = 230

(230) Authenticates this peer and connects to a virtual application

• const byte JoinLobby = 229

(229) Joins lobby (on master)

• const byte LeaveLobby = 228

(228) Leaves lobby (on master)

• const byte CreateGame = 227

(227) Creates a game (or fails if name exists)

• const byte JoinGame = 226

(226) Join game (by name)

• const byte JoinRandomGame = 225

(225) Joins random game (on master)

• const byte Leave = (byte)254

(254) Code for OpLeave, to get out of a room.

• const byte RaiseEvent = (byte)253

(253) Raise event (in a room, for other actors/players)

• const byte SetProperties = (byte)252

(252) Set Properties (of room or actor/player)

• const byte GetProperties = (byte)251

(251) Get Properties

• const byte ChangeGroups = (byte)248

(248) Operation code to change interest groups in Rooms (Lite application and extending ones).

• const byte FindFriends = 222

(222) Request the rooms and online status for a list of friends (by name, which should be unique).

• const byte GetLobbyStats = 221

(221) Request statistics about a specific list of lobbies (their user and game count).

• const byte GetRegions = 220

(220) Get list of regional servers from a NameServer.

• const byte WebRpc = 219

(219) WebRpc Operation.

• const byte ServerSettings = 218

(218) Operation to set some server settings. Used with different parameters on various servers.

• const byte GetGameList = 217

(217) Get the game list matching a supplied sql filter (SqlListLobby only)

8.69.1 Detailed Description

Class for constants. Contains operation codes.

These constants are used internally.

Generated by Doxygen

228 Class Documentation

8.69.2 Member Data Documentation

8.69.2.1 Authenticate

const byte Authenticate = 230 [static]

(230) Authenticates this peer and connects to a virtual application

8.69.2.2 AuthenticateOnce

const byte AuthenticateOnce = 231 [static]

(231) Authenticates this peer and connects to a virtual application

8.69.2.3 ChangeGroups

const byte ChangeGroups = (byte)248 [static]

(248) Operation code to change interest groups in Rooms (Lite application and extending ones).

8.69.2.4 CreateGame

const byte CreateGame = 227 [static]

(227) Creates a game (or fails if name exists)

8.69.2.5 FindFriends

const byte FindFriends = 222 [static]

(222) Request the rooms and online status for a list of friends (by name, which should be unique).

Generated by Doxygen

8.69 OperationCode Class Reference 229

8.69.2.6 GetGameList

const byte GetGameList = 217 [static]

(217) Get the game list matching a supplied sql filter (SqlListLobby only)

8.69.2.7 GetLobbyStats

const byte GetLobbyStats = 221 [static]

(221) Request statistics about a specific list of lobbies (their user and game count).

8.69.2.8 GetProperties

const byte GetProperties = (byte)251 [static]

(251) Get Properties

8.69.2.9 GetRegions

const byte GetRegions = 220 [static]

(220) Get list of regional servers from a NameServer.

8.69.2.10 Join

const byte Join = 255 [static]

(255) Code for OpJoin, to get into a room.

8.69.2.11 JoinGame

const byte JoinGame = 226 [static]

(226) Join game (by name)

Generated by Doxygen

230 Class Documentation

8.69.2.12 JoinLobby

const byte JoinLobby = 229 [static]

(229) Joins lobby (on master)

8.69.2.13 JoinRandomGame

const byte JoinRandomGame = 225 [static]

(225) Joins random game (on master)

8.69.2.14 Leave

const byte Leave = (byte)254 [static]

(254) Code for OpLeave, to get out of a room.

8.69.2.15 LeaveLobby

const byte LeaveLobby = 228 [static]

(228) Leaves lobby (on master)

8.69.2.16 RaiseEvent

const byte RaiseEvent = (byte)253 [static]

(253) Raise event (in a room, for other actors/players)

8.69.2.17 ServerSettings

const byte ServerSettings = 218 [static]

(218) Operation to set some server settings. Used with different parameters on various servers.

Generated by Doxygen

8.70 OpJoinRandomRoomParams Class Reference 231

8.69.2.18 SetProperties

const byte SetProperties = (byte)252 [static]

(252) Set Properties (of room or actor/player)

8.69.2.19 WebRpc

const byte WebRpc = 219 [static]

(219) WebRpc Operation.

8.70 OpJoinRandomRoomParams Class Reference

Parameters for the matchmaking of JoinRandomRoom and JoinRandomOrCreateRoom.

Public Attributes

• Hashtable ExpectedCustomRoomProperties

The custom room properties a room must have to fit. All key-values must be present to match. In SQL Lobby, use
SqlLobbyFilter instead.

• byte ExpectedMaxPlayers

Filters by the MaxPlayers value of rooms.

• MatchmakingMode MatchingType

The MatchmakingMode affects how rooms get filled. By default, the server fills rooms.

• TypedLobby TypedLobby

The lobby in which to match. The type affects how filters are applied.

• string SqlLobbyFilter

SQL query to filter room matches. For default-typed lobbies, use ExpectedCustomRoomProperties instead.

• string[] ExpectedUsers

The expected users list blocks player slots for your friends or team mates to join the room, too.

8.70.1 Detailed Description

Parameters for the matchmaking of JoinRandomRoom and JoinRandomOrCreateRoom.

More about matchmaking: https://doc.photonengine.com/en-us/pun/current/manuals-and-demos/matchmaking-
and-lobby.

8.70.2 Member Data Documentation

Generated by Doxygen

232 Class Documentation

8.70.2.1 ExpectedCustomRoomProperties

Hashtable ExpectedCustomRoomProperties

The custom room properties a room must have to fit. All key-values must be present to match. In SQL Lobby, use
SqlLobbyFilter instead.

8.70.2.2 ExpectedMaxPlayers

byte ExpectedMaxPlayers

Filters by the MaxPlayers value of rooms.

8.70.2.3 ExpectedUsers

string [] ExpectedUsers

The expected users list blocks player slots for your friends or team mates to join the room, too.

See: https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-and-lobby#matchmaking←↩

_slot_reservation

8.70.2.4 MatchingType

MatchmakingMode MatchingType

The MatchmakingMode affects how rooms get filled. By default, the server fills rooms.

8.70.2.5 SqlLobbyFilter

string SqlLobbyFilter

SQL query to filter room matches. For default-typed lobbies, use ExpectedCustomRoomProperties instead.

8.70.2.6 TypedLobby

TypedLobby TypedLobby

The lobby in which to match. The type affects how filters are applied.

Generated by Doxygen

8.71 ParameterCode Class Reference 233

8.71 ParameterCode Class Reference

Class for constants. Codes for parameters of Operations and Events.

Static Public Attributes

• const byte ApplicationId = 224

(224) Your application's ID: a name on your own Photon or a GUID on the Photon Cloud

• const byte Secret = 221

(221) Internally used to establish encryption

• const byte AppVersion = 220

(220) Version of your application

• const byte ClientAuthenticationType = 217

(217) This key's (byte) value defines the target custom authentication type/service the client connects with. Used in
OpAuthenticate

• const byte ClientAuthenticationParams = 216

(216) This key's (string) value provides parameters sent to the custom authentication type/service the client connects
with. Used in OpAuthenticate

• const byte ClientAuthenticationData = 214

(214) This key's (string or byte[]) value provides parameters sent to the custom authentication service setup in Photon
Dashboard. Used in OpAuthenticate

• const byte Region = 210

(210) Used for region values in OpAuth and OpGetRegions.

• const byte Address = 230

(230) Address of a (game) server to use.

• const byte UserId = 225

(225) User's ID

8.71.1 Detailed Description

Class for constants. Codes for parameters of Operations and Events.

8.71.2 Member Data Documentation

8.71.2.1 Address

const byte Address = 230 [static]

(230) Address of a (game) server to use.

Generated by Doxygen

234 Class Documentation

8.71.2.2 ApplicationId

const byte ApplicationId = 224 [static]

(224) Your application's ID: a name on your own Photon or a GUID on the Photon Cloud

8.71.2.3 AppVersion

const byte AppVersion = 220 [static]

(220) Version of your application

8.71.2.4 ClientAuthenticationData

const byte ClientAuthenticationData = 214 [static]

(214) This key's (string or byte[]) value provides parameters sent to the custom authentication service setup in
Photon Dashboard. Used in OpAuthenticate

8.71.2.5 ClientAuthenticationParams

const byte ClientAuthenticationParams = 216 [static]

(216) This key's (string) value provides parameters sent to the custom authentication type/service the client connects
with. Used in OpAuthenticate

8.71.2.6 ClientAuthenticationType

const byte ClientAuthenticationType = 217 [static]

(217) This key's (byte) value defines the target custom authentication type/service the client connects with. Used in
OpAuthenticate

8.71.2.7 Region

const byte Region = 210 [static]

(210) Used for region values in OpAuth and OpGetRegions.

Generated by Doxygen

8.72 ParameterCode Class Reference 235

8.71.2.8 Secret

const byte Secret = 221 [static]

(221) Internally used to establish encryption

8.71.2.9 UserId

const byte UserId = 225 [static]

(225) User's ID

8.72 ParameterCode Class Reference

Class for constants. Codes for parameters of Operations and Events.

Static Public Attributes

• const byte SuppressRoomEvents = 237

(237) A bool parameter for creating games. If set to true, no room events are sent to the clients on join and leave.
Default: false (and not sent).

• const byte EmptyRoomTTL = 236

(236) Time To Live (TTL) for a room when the last player leaves. Keeps room in memory for case a player re-joins
soon. In milliseconds.

• const byte PlayerTTL = 235

(235) Time To Live (TTL) for an 'actor' in a room. If a client disconnects, this actor is inactive first and removed after
this timeout. In milliseconds.

• const byte EventForward = 234

(234) Optional parameter of OpRaiseEvent and OpSetCustomProperties to forward the event/operation to a web-
service.

• const byte IsComingBack = (byte)233

(233) Optional parameter of OpLeave in async games. If false, the player does abandons the game (forever). By
default players become inactive and can re-join.

• const byte IsInactive = (byte)233

(233) Used in EvLeave to describe if a user is inactive (and might come back) or not. In rooms with PlayerTTL,
becoming inactive is the default case.

• const byte CheckUserOnJoin = (byte)232

(232) Used when creating rooms to define if any userid can join the room only once.

• const byte ExpectedValues = (byte)231

(231) Code for "Check And Swap" (CAS) when changing properties.

• const byte Address = 230

(230) Address of a (game) server to use.

• const byte PeerCount = 229

(229) Count of players in this application in a rooms (used in stats event)

• const byte GameCount = 228

(228) Count of games in this application (used in stats event)

• const byte MasterPeerCount = 227

Generated by Doxygen

236 Class Documentation

(227) Count of players on the master server (in this app, looking for rooms)

• const byte UserId = 225

(225) User's ID

• const byte ApplicationId = 224

(224) Your application's ID: a name on your own Photon or a GUID on the Photon Cloud

• const byte Position = 223

(223) Not used currently (as "Position"). If you get queued before connect, this is your position

• const byte MatchMakingType = 223

(223) Modifies the matchmaking algorithm used for OpJoinRandom. Allowed parameter values are defined in enum
MatchmakingMode.

• const byte GameList = 222

(222) List of RoomInfos about open / listed rooms

• const byte Token = 221

(221) Internally used to establish encryption

• const byte AppVersion = 220

(220) Version of your application

• const byte AzureNodeInfo = 210

(210) Internally used in case of hosting by Azure

• const byte AzureLocalNodeId = 209

(209) Internally used in case of hosting by Azure

• const byte AzureMasterNodeId = 208

(208) Internally used in case of hosting by Azure

• const byte RoomName = (byte)255

(255) Code for the gameId/roomName (a unique name per room). Used in OpJoin and similar.

• const byte Broadcast = (byte)250

(250) Code for broadcast parameter of OpSetProperties method.

• const byte ActorList = (byte)252

(252) Code for list of players in a room.

• const byte ActorNr = (byte)254

(254) Code of the Actor of an operation. Used for property get and set.

• const byte PlayerProperties = (byte)249

(249) Code for property set (Hashtable).

• const byte CustomEventContent = (byte)245

(245) Code of data/custom content of an event. Used in OpRaiseEvent.

• const byte Data = (byte)245

(245) Code of data of an event. Used in OpRaiseEvent.

• const byte Code = (byte)244

(244) Code used when sending some code-related parameter, like OpRaiseEvent's event-code.

• const byte GameProperties = (byte)248

(248) Code for property set (Hashtable).

• const byte Properties = (byte)251

(251) Code for property-set (Hashtable). This key is used when sending only one set of properties. If either
ActorProperties or GameProperties are used (or both), check those keys.

• const byte TargetActorNr = (byte)253

(253) Code of the target Actor of an operation. Used for property set. Is 0 for game

• const byte ReceiverGroup = (byte)246

(246) Code to select the receivers of events (used in Lite, Operation RaiseEvent).

• const byte Cache = (byte)247

(247) Code for caching events while raising them.

• const byte CleanupCacheOnLeave = (byte)241

Generated by Doxygen

8.72 ParameterCode Class Reference 237

(241) Bool parameter of CreateGame Operation. If true, server cleans up roomcache of leaving players (their cached
events get removed).

• const byte Group = 240

(240) Code for "group" operation-parameter (as used in Op RaiseEvent).

• const byte Remove = 239

(239) The "Remove" operation-parameter can be used to remove something from a list. E.g. remove groups from
player's interest groups.

• const byte PublishUserId = 239

(239) Used in Op Join to define if UserIds of the players are broadcast in the room. Useful for FindFriends and
reserving slots for expected users.

• const byte Add = 238

(238) The "Add" operation-parameter can be used to add something to some list or set. E.g. add groups to player's
interest groups.

• const byte Info = 218

(218) Content for EventCode.ErrorInfo and internal debug operations.

• const byte ClientAuthenticationType = 217

(217) This key's (byte) value defines the target custom authentication type/service the client connects with. Used in
OpAuthenticate

• const byte ClientAuthenticationParams = 216

(216) This key's (string) value provides parameters sent to the custom authentication type/service the client connects
with. Used in OpAuthenticate

• const byte JoinMode = 215

(215) Makes the server create a room if it doesn't exist. OpJoin uses this to always enter a room, unless it exists and
is full/closed.

• const byte ClientAuthenticationData = 214

(214) This key's (string or byte[]) value provides parameters sent to the custom authentication service setup in Photon
Dashboard. Used in OpAuthenticate

• const byte MasterClientId = (byte)203

(203) Code for MasterClientId, which is synced by server. When sent as op-parameter this is code 203.

• const byte FindFriendsRequestList = (byte)1

(1) Used in Op FindFriends request. Value must be string[] of friends to look up.

• const byte FindFriendsOptions = (byte)2

(2) Used in Op FindFriends request. An integer containing option-flags to filter the results.

• const byte FindFriendsResponseOnlineList = (byte)1

(1) Used in Op FindFriends response. Contains bool[] list of online states (false if not online).

• const byte FindFriendsResponseRoomIdList = (byte)2

(2) Used in Op FindFriends response. Contains string[] of room names ("" where not known or no room joined).

• const byte LobbyName = (byte)213

(213) Used in matchmaking-related methods and when creating a room to name a lobby (to join or to attach a room
to).

• const byte LobbyType = (byte)212

(212) Used in matchmaking-related methods and when creating a room to define the type of a lobby. Combined with
the lobby name this identifies the lobby.

• const byte LobbyStats = (byte)211

(211) This (optional) parameter can be sent in Op Authenticate to turn on Lobby Stats (info about lobby names and
their user- and game-counts).

• const byte Region = (byte)210

(210) Used for region values in OpAuth and OpGetRegions.

• const byte UriPath = 209

(209) Path of the WebRPC that got called. Also known as "WebRpc Name". Type: string.

• const byte WebRpcParameters = 208

(208) Parameters for a WebRPC as: Dictionary<string, object>. This will get serialized to JSon.

• const byte WebRpcReturnCode = 207

Generated by Doxygen

238 Class Documentation

(207) ReturnCode for the WebRPC, as sent by the web service (not by Photon, which uses ErrorCode). Type: byte.

• const byte WebRpcReturnMessage = 206

(206) Message returned by WebRPC server. Analog to Photon's debug message. Type: string.

• const byte CacheSliceIndex = 205

(205) Used to define a "slice" for cached events. Slices can easily be removed from cache. Type: int.

• const byte Plugins = 204

(204) Informs the server of the expected plugin setup.

• const byte NickName = 202

(202) Used by the server in Operation Responses, when it sends the nickname of the client (the user's nickname).

• const byte PluginName = 201

(201) Informs user about name of plugin load to game

• const byte PluginVersion = 200

(200) Informs user about version of plugin load to game

• const byte Cluster = 196

(196) Cluster info provided in OpAuthenticate/OpAuthenticateOnce responses.

• const byte ExpectedProtocol = 195

(195) Protocol which will be used by client to connect master/game servers. Used for nameserver.

• const byte CustomInitData = 194

(194) Set of custom parameters which are sent in auth request.

• const byte EncryptionMode = 193

(193) How are we going to encrypt data.

• const byte EncryptionData = 192

(192) Parameter of Authentication, which contains encryption keys (depends on AuthMode and EncryptionMode).

• const byte RoomOptionFlags = 191

(191) An int parameter summarizing several boolean room-options with bit-flags.

8.72.1 Detailed Description

Class for constants. Codes for parameters of Operations and Events.

These constants are used internally.

8.72.2 Member Data Documentation

8.72.2.1 ActorList

const byte ActorList = (byte)252 [static]

(252) Code for list of players in a room.

8.72.2.2 ActorNr

const byte ActorNr = (byte)254 [static]

(254) Code of the Actor of an operation. Used for property get and set.

Generated by Doxygen

8.72 ParameterCode Class Reference 239

8.72.2.3 Add

const byte Add = 238 [static]

(238) The "Add" operation-parameter can be used to add something to some list or set. E.g. add groups to player's
interest groups.

8.72.2.4 Address

const byte Address = 230 [static]

(230) Address of a (game) server to use.

8.72.2.5 ApplicationId

const byte ApplicationId = 224 [static]

(224) Your application's ID: a name on your own Photon or a GUID on the Photon Cloud

8.72.2.6 AppVersion

const byte AppVersion = 220 [static]

(220) Version of your application

8.72.2.7 AzureLocalNodeId

const byte AzureLocalNodeId = 209 [static]

(209) Internally used in case of hosting by Azure

8.72.2.8 AzureMasterNodeId

const byte AzureMasterNodeId = 208 [static]

(208) Internally used in case of hosting by Azure

Generated by Doxygen

240 Class Documentation

8.72.2.9 AzureNodeInfo

const byte AzureNodeInfo = 210 [static]

(210) Internally used in case of hosting by Azure

8.72.2.10 Broadcast

const byte Broadcast = (byte)250 [static]

(250) Code for broadcast parameter of OpSetProperties method.

8.72.2.11 Cache

const byte Cache = (byte)247 [static]

(247) Code for caching events while raising them.

8.72.2.12 CacheSliceIndex

const byte CacheSliceIndex = 205 [static]

(205) Used to define a "slice" for cached events. Slices can easily be removed from cache. Type: int.

8.72.2.13 CheckUserOnJoin

const byte CheckUserOnJoin = (byte)232 [static]

(232) Used when creating rooms to define if any userid can join the room only once.

8.72.2.14 CleanupCacheOnLeave

const byte CleanupCacheOnLeave = (byte)241 [static]

(241) Bool parameter of CreateGame Operation. If true, server cleans up roomcache of leaving players (their
cached events get removed).

Generated by Doxygen

8.72 ParameterCode Class Reference 241

8.72.2.15 ClientAuthenticationData

const byte ClientAuthenticationData = 214 [static]

(214) This key's (string or byte[]) value provides parameters sent to the custom authentication service setup in
Photon Dashboard. Used in OpAuthenticate

8.72.2.16 ClientAuthenticationParams

const byte ClientAuthenticationParams = 216 [static]

(216) This key's (string) value provides parameters sent to the custom authentication type/service the client connects
with. Used in OpAuthenticate

8.72.2.17 ClientAuthenticationType

const byte ClientAuthenticationType = 217 [static]

(217) This key's (byte) value defines the target custom authentication type/service the client connects with. Used in
OpAuthenticate

8.72.2.18 Cluster

const byte Cluster = 196 [static]

(196) Cluster info provided in OpAuthenticate/OpAuthenticateOnce responses.

8.72.2.19 Code

const byte Code = (byte)244 [static]

(244) Code used when sending some code-related parameter, like OpRaiseEvent's event-code.

This is not the same as the Operation's code, which is no longer sent as part of the parameter Dictionary in Photon
3.

8.72.2.20 CustomEventContent

const byte CustomEventContent = (byte)245 [static]

(245) Code of data/custom content of an event. Used in OpRaiseEvent.

Generated by Doxygen

242 Class Documentation

8.72.2.21 CustomInitData

const byte CustomInitData = 194 [static]

(194) Set of custom parameters which are sent in auth request.

8.72.2.22 Data

const byte Data = (byte)245 [static]

(245) Code of data of an event. Used in OpRaiseEvent.

8.72.2.23 EmptyRoomTTL

const byte EmptyRoomTTL = 236 [static]

(236) Time To Live (TTL) for a room when the last player leaves. Keeps room in memory for case a player re-joins
soon. In milliseconds.

8.72.2.24 EncryptionData

const byte EncryptionData = 192 [static]

(192) Parameter of Authentication, which contains encryption keys (depends on AuthMode and EncryptionMode).

8.72.2.25 EncryptionMode

const byte EncryptionMode = 193 [static]

(193) How are we going to encrypt data.

8.72.2.26 EventForward

const byte EventForward = 234 [static]

(234) Optional parameter of OpRaiseEvent and OpSetCustomProperties to forward the event/operation to a web-
service.

Generated by Doxygen

8.72 ParameterCode Class Reference 243

8.72.2.27 ExpectedProtocol

const byte ExpectedProtocol = 195 [static]

(195) Protocol which will be used by client to connect master/game servers. Used for nameserver.

8.72.2.28 ExpectedValues

const byte ExpectedValues = (byte)231 [static]

(231) Code for "Check And Swap" (CAS) when changing properties.

8.72.2.29 FindFriendsOptions

const byte FindFriendsOptions = (byte)2 [static]

(2) Used in Op FindFriends request. An integer containing option-flags to filter the results.

8.72.2.30 FindFriendsRequestList

const byte FindFriendsRequestList = (byte)1 [static]

(1) Used in Op FindFriends request. Value must be string[] of friends to look up.

8.72.2.31 FindFriendsResponseOnlineList

const byte FindFriendsResponseOnlineList = (byte)1 [static]

(1) Used in Op FindFriends response. Contains bool[] list of online states (false if not online).

8.72.2.32 FindFriendsResponseRoomIdList

const byte FindFriendsResponseRoomIdList = (byte)2 [static]

(2) Used in Op FindFriends response. Contains string[] of room names ("" where not known or no room joined).

Generated by Doxygen

244 Class Documentation

8.72.2.33 GameCount

const byte GameCount = 228 [static]

(228) Count of games in this application (used in stats event)

8.72.2.34 GameList

const byte GameList = 222 [static]

(222) List of RoomInfos about open / listed rooms

8.72.2.35 GameProperties

const byte GameProperties = (byte)248 [static]

(248) Code for property set (Hashtable).

8.72.2.36 Group

const byte Group = 240 [static]

(240) Code for "group" operation-parameter (as used in Op RaiseEvent).

8.72.2.37 Info

const byte Info = 218 [static]

(218) Content for EventCode.ErrorInfo and internal debug operations.

8.72.2.38 IsComingBack

const byte IsComingBack = (byte)233 [static]

(233) Optional parameter of OpLeave in async games. If false, the player does abandons the game (forever). By
default players become inactive and can re-join.

Generated by Doxygen

8.72 ParameterCode Class Reference 245

8.72.2.39 IsInactive

const byte IsInactive = (byte)233 [static]

(233) Used in EvLeave to describe if a user is inactive (and might come back) or not. In rooms with PlayerTTL,
becoming inactive is the default case.

8.72.2.40 JoinMode

const byte JoinMode = 215 [static]

(215) Makes the server create a room if it doesn't exist. OpJoin uses this to always enter a room, unless it exists
and is full/closed.

(215) The JoinMode enum defines which variant of joining a room will be executed: Join only if available, create if
not exists or re-join.

Replaces CreateIfNotExists which was only a bool-value.

8.72.2.41 LobbyName

const byte LobbyName = (byte)213 [static]

(213) Used in matchmaking-related methods and when creating a room to name a lobby (to join or to attach a room
to).

8.72.2.42 LobbyStats

const byte LobbyStats = (byte)211 [static]

(211) This (optional) parameter can be sent in Op Authenticate to turn on Lobby Stats (info about lobby names and
their user- and game-counts).

8.72.2.43 LobbyType

const byte LobbyType = (byte)212 [static]

(212) Used in matchmaking-related methods and when creating a room to define the type of a lobby. Combined
with the lobby name this identifies the lobby.

Generated by Doxygen

246 Class Documentation

8.72.2.44 MasterClientId

const byte MasterClientId = (byte)203 [static]

(203) Code for MasterClientId, which is synced by server. When sent as op-parameter this is code 203.

Tightly related to GamePropertyKey.MasterClientId.

8.72.2.45 MasterPeerCount

const byte MasterPeerCount = 227 [static]

(227) Count of players on the master server (in this app, looking for rooms)

8.72.2.46 MatchMakingType

const byte MatchMakingType = 223 [static]

(223) Modifies the matchmaking algorithm used for OpJoinRandom. Allowed parameter values are defined in enum
MatchmakingMode.

8.72.2.47 NickName

const byte NickName = 202 [static]

(202) Used by the server in Operation Responses, when it sends the nickname of the client (the user's nickname).

8.72.2.48 PeerCount

const byte PeerCount = 229 [static]

(229) Count of players in this application in a rooms (used in stats event)

8.72.2.49 PlayerProperties

const byte PlayerProperties = (byte)249 [static]

(249) Code for property set (Hashtable).

Generated by Doxygen

8.72 ParameterCode Class Reference 247

8.72.2.50 PlayerTTL

const byte PlayerTTL = 235 [static]

(235) Time To Live (TTL) for an 'actor' in a room. If a client disconnects, this actor is inactive first and removed after
this timeout. In milliseconds.

8.72.2.51 PluginName

const byte PluginName = 201 [static]

(201) Informs user about name of plugin load to game

8.72.2.52 Plugins

const byte Plugins = 204 [static]

(204) Informs the server of the expected plugin setup.

The operation will fail in case of a plugin mismatch returning error code PluginMismatch 32751(0x7FFF - 16). Setting
string[]{} means the client expects no plugin to be setup. Note: for backwards compatibility null omits any check.

8.72.2.53 PluginVersion

const byte PluginVersion = 200 [static]

(200) Informs user about version of plugin load to game

8.72.2.54 Position

const byte Position = 223 [static]

(223) Not used currently (as "Position"). If you get queued before connect, this is your position

8.72.2.55 Properties

const byte Properties = (byte)251 [static]

(251) Code for property-set (Hashtable). This key is used when sending only one set of properties. If either
ActorProperties or GameProperties are used (or both), check those keys.

Generated by Doxygen

248 Class Documentation

8.72.2.56 PublishUserId

const byte PublishUserId = 239 [static]

(239) Used in Op Join to define if UserIds of the players are broadcast in the room. Useful for FindFriends and
reserving slots for expected users.

8.72.2.57 ReceiverGroup

const byte ReceiverGroup = (byte)246 [static]

(246) Code to select the receivers of events (used in Lite, Operation RaiseEvent).

8.72.2.58 Region

const byte Region = (byte)210 [static]

(210) Used for region values in OpAuth and OpGetRegions.

8.72.2.59 Remove

const byte Remove = 239 [static]

(239) The "Remove" operation-parameter can be used to remove something from a list. E.g. remove groups from
player's interest groups.

8.72.2.60 RoomName

const byte RoomName = (byte)255 [static]

(255) Code for the gameId/roomName (a unique name per room). Used in OpJoin and similar.

8.72.2.61 RoomOptionFlags

const byte RoomOptionFlags = 191 [static]

(191) An int parameter summarizing several boolean room-options with bit-flags.

Generated by Doxygen

8.72 ParameterCode Class Reference 249

8.72.2.62 SuppressRoomEvents

const byte SuppressRoomEvents = 237 [static]

(237) A bool parameter for creating games. If set to true, no room events are sent to the clients on join and leave.
Default: false (and not sent).

8.72.2.63 TargetActorNr

const byte TargetActorNr = (byte)253 [static]

(253) Code of the target Actor of an operation. Used for property set. Is 0 for game

8.72.2.64 Token

const byte Token = 221 [static]

(221) Internally used to establish encryption

8.72.2.65 UriPath

const byte UriPath = 209 [static]

(209) Path of the WebRPC that got called. Also known as "WebRpc Name". Type: string.

8.72.2.66 UserId

const byte UserId = 225 [static]

(225) User's ID

8.72.2.67 WebRpcParameters

const byte WebRpcParameters = 208 [static]

(208) Parameters for a WebRPC as: Dictionary<string, object>. This will get serialized to JSon.

Generated by Doxygen

250 Class Documentation

8.72.2.68 WebRpcReturnCode

const byte WebRpcReturnCode = 207 [static]

(207) ReturnCode for the WebRPC, as sent by the web service (not by Photon, which uses ErrorCode). Type: byte.

8.72.2.69 WebRpcReturnMessage

const byte WebRpcReturnMessage = 206 [static]

(206) Message returned by WebRPC server. Analog to Photon's debug message. Type: string.

8.73 PhotonAnimatorView Class Reference

This class helps you to synchronize Mecanim animations Simply add the component to your GameObject and make
sure that the PhotonAnimatorView is added to the list of observed components

Inherits MonoBehaviourPun, and IPunObservable.

Classes

• class SynchronizedLayer
• class SynchronizedParameter

Public Types

• enum ParameterType
• enum SynchronizeType

Public Member Functions

• void CacheDiscreteTriggers ()

Caches the discrete triggers values for keeping track of raised triggers, and will be reseted after the sync routine got
performed

• bool DoesLayerSynchronizeTypeExist (int layerIndex)

Check if a specific layer is configured to be synchronize
• bool DoesParameterSynchronizeTypeExist (string name)

Check if the specified parameter is configured to be synchronized
• List< SynchronizedLayer > GetSynchronizedLayers ()

Get a list of all synchronized layers
• List< SynchronizedParameter > GetSynchronizedParameters ()

Get a list of all synchronized parameters
• SynchronizeType GetLayerSynchronizeType (int layerIndex)

Gets the type how the layer is synchronized
• SynchronizeType GetParameterSynchronizeType (string name)

Gets the type how the parameter is synchronized
• void SetLayerSynchronized (int layerIndex, SynchronizeType synchronizeType)

Sets the how a layer should be synchronized
• void SetParameterSynchronized (string name, ParameterType type, SynchronizeType synchronizeType)

Sets the how a parameter should be synchronized
• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

Generated by Doxygen

8.73 PhotonAnimatorView Class Reference 251

Additional Inherited Members

8.73.1 Detailed Description

This class helps you to synchronize Mecanim animations Simply add the component to your GameObject and make
sure that the PhotonAnimatorView is added to the list of observed components

When Using Trigger Parameters, make sure the component that sets the trigger is higher in the stack of Components
on the GameObject than 'PhotonAnimatorView' Triggers are raised true during one frame only.

8.73.2 Member Function Documentation

8.73.2.1 CacheDiscreteTriggers()

void CacheDiscreteTriggers ()

Caches the discrete triggers values for keeping track of raised triggers, and will be reseted after the sync routine
got performed

8.73.2.2 DoesLayerSynchronizeTypeExist()

bool DoesLayerSynchronizeTypeExist (

int layerIndex)

Check if a specific layer is configured to be synchronize

Parameters

layerIndex Index of the layer.

Returns

True if the layer is synchronized

8.73.2.3 DoesParameterSynchronizeTypeExist()

bool DoesParameterSynchronizeTypeExist (

string name)

Check if the specified parameter is configured to be synchronized

Generated by Doxygen

252 Class Documentation

Parameters

name The name of the parameter.

Returns

True if the parameter is synchronized

8.73.2.4 GetLayerSynchronizeType()

SynchronizeType GetLayerSynchronizeType (

int layerIndex)

Gets the type how the layer is synchronized

Parameters

layerIndex Index of the layer.

Returns

Disabled/Discrete/Continuous

8.73.2.5 GetParameterSynchronizeType()

SynchronizeType GetParameterSynchronizeType (

string name)

Gets the type how the parameter is synchronized

Parameters

name The name of the parameter.

Returns

Disabled/Discrete/Continuous

8.73.2.6 GetSynchronizedLayers()

List<SynchronizedLayer> GetSynchronizedLayers ()

Get a list of all synchronized layers

Generated by Doxygen

8.73 PhotonAnimatorView Class Reference 253

Returns

List of SynchronizedLayer objects

8.73.2.7 GetSynchronizedParameters()

List<SynchronizedParameter> GetSynchronizedParameters ()

Get a list of all synchronized parameters

Returns

List of SynchronizedParameter objects

8.73.2.8 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

This method will be called in scripts that are assigned as Observed component of a PhotonView.
PhotonNetwork.SerializationRate affects how often this method is called.
PhotonNetwork.SendRate affects how often packages are sent by this client.

Implementing this method, you can customize which data a PhotonView regularly synchronizes. Your code defines
what is being sent (content) and how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it is assigned to a PhotonView as Photon←↩

View.observed script.

To make use of this method, the PhotonStream is essential. It will be in "writing" mode" on the client that controls a
PhotonView (PhotonStream.IsWriting == true) and in "reading mode" on the remote clients that just receive that the
controlling client sends.

If you skip writing any value into the stream, PUN will skip the update. Used carefully, this can conserve bandwidth
and messages (which have a limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when the sender does not send any update. This
can't be used as "x-times per second Update()".

Implements IPunObservable.

8.73.2.9 SetLayerSynchronized()

void SetLayerSynchronized (

int layerIndex,

SynchronizeType synchronizeType)

Sets the how a layer should be synchronized

Generated by Doxygen

254 Class Documentation

Parameters

layerIndex Index of the layer.

synchronizeType Disabled/Discrete/Continuous

8.73.2.10 SetParameterSynchronized()

void SetParameterSynchronized (

string name,

ParameterType type,

SynchronizeType synchronizeType)

Sets the how a parameter should be synchronized

Parameters

name The name of the parameter.

type The type of the parameter.

synchronizeType Disabled/Discrete/Continuous

8.74 PhotonAppSettings Class Reference

Collection of connection-relevant settings, used internally by PhotonNetwork.ConnectUsingSettings.

Inherits ScriptableObject.

Static Public Member Functions

• static void LoadOrCreateSettings ()

Public Attributes

• AppSettings AppSettings

Properties

• static PhotonAppSettings Instance [get]

Serialized server settings, written by the Setup Wizard for use in ConnectUsingSettings.

8.74.1 Detailed Description

Collection of connection-relevant settings, used internally by PhotonNetwork.ConnectUsingSettings.

Includes the AppSettings class from the Realtime APIs plus some other, PUN-relevant, settings.

Generated by Doxygen

8.75 PhotonHandler Class Reference 255

8.74.2 Property Documentation

8.74.2.1 Instance

PhotonAppSettings Instance [static], [get]

Serialized server settings, written by the Setup Wizard for use in ConnectUsingSettings.

8.75 PhotonHandler Class Reference

Internal MonoBehaviour that allows Photon to run an Update loop.

Inherits ConnectionHandler, IInRoomCallbacks, and IMatchmakingCallbacks.

Public Member Functions

• void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

• void OnRoomPropertiesUpdate (Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

• void OnPlayerPropertiesUpdate (Player targetPlayer, Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

• void OnMasterClientSwitched (Player newMasterClient)

Called after switching to a new MasterClient when the current one leaves.

• void OnFriendListUpdate (System.Collections.Generic.List< FriendInfo > friendList)
• void OnCreateRoomFailed (short returnCode, string message)

Called when the server couldn't create a room (OpCreateRoom failed).

• void OnJoinRoomFailed (short returnCode, string message)

Called when a previous OpJoinRoom call failed on the server.

• void OnJoinRandomFailed (short returnCode, string message)

Called when a previous OpJoinRandom call failed on the server.

• void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

• void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

• void OnPlayerEnteredRoom (Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

• void OnPlayerLeftRoom (Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

Static Public Attributes

• static int MaxDatagrams = 3

Limits the number of datagrams that are created in each LateUpdate.

• static bool SendAsap

Signals that outgoing messages should be sent in the next LateUpdate call.

Generated by Doxygen

256 Class Documentation

Protected Member Functions

• override void Awake ()
• virtual void OnEnable ()
• void Start ()
• override void OnDisable ()
• void FixedUpdate ()

Called in intervals by UnityEngine. Affected by Time.timeScale.

• void LateUpdate ()

Called in intervals by UnityEngine, after running the normal game code and physics.

• void Dispatch ()

Dispatches incoming network messages for PUN. Called in FixedUpdate or LateUpdate.

Protected Attributes

• List< int > reusableIntList = new List<int>()

Additional Inherited Members

8.75.1 Detailed Description

Internal MonoBehaviour that allows Photon to run an Update loop.

8.75.2 Member Function Documentation

8.75.2.1 Dispatch()

void Dispatch () [protected]

Dispatches incoming network messages for PUN. Called in FixedUpdate or LateUpdate.

It may make sense to dispatch incoming messages, even if the timeScale is near 0. That can be configured with
PhotonNetwork.MinimalTimeScaleToDispatchInFixedUpdate.

Without dispatching messages, PUN won't change state and does not handle updates.

8.75.2.2 FixedUpdate()

void FixedUpdate () [protected]

Called in intervals by UnityEngine. Affected by Time.timeScale.

Generated by Doxygen

8.75 PhotonHandler Class Reference 257

8.75.2.3 LateUpdate()

void LateUpdate () [protected]

Called in intervals by UnityEngine, after running the normal game code and physics.

8.75.2.4 OnCreatedRoom()

void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see OpCreateRoom).

As any client might close (or drop connection) anytime, there is a chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal", implement OnMasterClientSwitched() and make each new
MasterClient check the room's state.

Implements IMatchmakingCallbacks.

8.75.2.5 OnCreateRoomFailed()

void OnCreateRoomFailed (

short returnCode,

string message)

Called when the server couldn't create a room (OpCreateRoom failed).

Creating a room may fail for various reasons. Most often, the room already exists (roomname in use) or the Room←↩

Options clash and it's impossible to create the room.

When creating a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

Generated by Doxygen

258 Class Documentation

8.75.2.6 OnJoinedRoom()

void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Implements IMatchmakingCallbacks.

8.75.2.7 OnJoinRandomFailed()

void OnJoinRandomFailed (

short returnCode,

string message)

Called when a previous OpJoinRandom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

This operation is only ever sent to the Master Server. Once a room is found by the Master Server, the client will
head off to the designated Game Server and use the operation Join on the Game Server.

When using multiple lobbies (via OpJoinLobby or a TypedLobby parameter), another lobby might have more/fitting
rooms.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.75.2.8 OnJoinRoomFailed()

void OnJoinRoomFailed (

short returnCode,

string message)

Called when a previous OpJoinRoom call failed on the server.

Generated by Doxygen

8.75 PhotonHandler Class Reference 259

Joining a room may fail for various reasons. Most often, the room is full or does not exist anymore (due to someone
else being faster or closing the room).

When joining a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.75.2.9 OnLeftRoom()

void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Implements IMatchmakingCallbacks.

8.75.2.10 OnMasterClientSwitched()

void OnMasterClientSwitched (

Player newMasterClient)

Called after switching to a new MasterClient when the current one leaves.

This is not called when this client enters a room. The former MasterClient is still in the player list when this method
get called.

Implements IInRoomCallbacks.

8.75.2.11 OnPlayerEnteredRoom()

void OnPlayerEnteredRoom (

Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

If your game starts with a certain number of players, this callback can be useful to check the Room.playerCount and
find out if you can start.

Implements IInRoomCallbacks.

Generated by Doxygen

260 Class Documentation

8.75.2.12 OnPlayerLeftRoom()

void OnPlayerLeftRoom (

Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

If another player leaves the room or if the server detects a lost connection, this callback will be used to notify your
game logic.

Depending on the room's setup, players may become inactive, which means they may return and retake their spot
in the room. In such cases, the Player stays in the Room.Players dictionary.

If the player is not just inactive, it gets removed from the Room.Players dictionary, before the callback is called.

Implements IInRoomCallbacks.

8.75.2.13 OnPlayerPropertiesUpdate()

void OnPlayerPropertiesUpdate (

Player targetPlayer,

Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

Changing properties must be done by Player.SetCustomProperties, which causes this callback locally, too.

Parameters

targetPlayer Contains Player that changed.

changedProps Contains the properties that changed.

Implements IInRoomCallbacks.

8.75.2.14 OnRoomPropertiesUpdate()

void OnRoomPropertiesUpdate (

Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

Since v1.25 this method has one parameter: Hashtable propertiesThatChanged.
Changing properties must be done by Room.SetCustomProperties, which causes this callback locally, too.

Parameters

propertiesThatChanged

Generated by Doxygen

8.76 PhotonLagSimulationGui Class Reference 261

Implements IInRoomCallbacks.

8.75.3 Member Data Documentation

8.75.3.1 MaxDatagrams

int MaxDatagrams = 3 [static]

Limits the number of datagrams that are created in each LateUpdate.

Helps spreading out sending of messages minimally.

8.75.3.2 SendAsap

bool SendAsap [static]

Signals that outgoing messages should be sent in the next LateUpdate call.

Up to MaxDatagrams are created to send queued messages.

8.76 PhotonLagSimulationGui Class Reference

This MonoBehaviour is a basic GUI for the Photon client's network-simulation feature. It can modify lag (fixed delay),
jitter (random lag) and packet loss.

Inherits MonoBehaviour.

Public Member Functions

• void Start ()
• void OnGUI ()

Public Attributes

• Rect WindowRect = new Rect(0, 100, 120, 100)

Positioning rect for window.

• int WindowId = 101

Unity GUI Window ID (must be unique or will cause issues).

• bool Visible = true

Shows or hides GUI (does not affect settings).

Generated by Doxygen

262 Class Documentation

Properties

• PhotonPeer Peer [get, set]

The peer currently in use (to set the network simulation).

8.76.1 Detailed Description

This MonoBehaviour is a basic GUI for the Photon client's network-simulation feature. It can modify lag (fixed delay),
jitter (random lag) and packet loss.

8.76.2 Member Data Documentation

8.76.2.1 Visible

bool Visible = true

Shows or hides GUI (does not affect settings).

8.76.2.2 WindowId

int WindowId = 101

Unity GUI Window ID (must be unique or will cause issues).

8.76.2.3 WindowRect

Rect WindowRect = new Rect(0, 100, 120, 100)

Positioning rect for window.

8.76.3 Property Documentation

8.76.3.1 Peer

PhotonPeer Peer [get], [set]

The peer currently in use (to set the network simulation).

Generated by Doxygen

8.77 PhotonMessageInfo Struct Reference 263

8.77 PhotonMessageInfo Struct Reference

Container class for info about a particular message, RPC or update.

Public Member Functions

• PhotonMessageInfo (Player player, int timestamp, PhotonView view)
• override string ToString ()

Public Attributes

• readonly Player Sender

The sender of a message / event. May be null.

• readonly PhotonView photonView

Properties

• double timestamp [get]

• double SentServerTime [get]

• int SentServerTimestamp [get]

8.77.1 Detailed Description

Container class for info about a particular message, RPC or update.

8.77.2 Member Data Documentation

8.77.2.1 Sender

readonly Player Sender

The sender of a message / event. May be null.

8.78 PhotonNetwork Class Reference

The main class to use the PhotonNetwork plugin. This class is static.

Generated by Doxygen

264 Class Documentation

Static Public Member Functions

• static bool ConnectUsingSettings ()

Connect to Photon as configured in the PhotonServerSettings file.

• static bool ConnectUsingSettings (AppSettings appSettings, bool startInOfflineMode=false)
• static bool ConnectToMaster (string masterServerAddress, int port, string appID)

Connect to a Photon Master Server by address, port, appID.

• static bool ConnectToBestCloudServer ()

Connect to the Photon Cloud region with the lowest ping (on platforms that support Unity's Ping).

• static bool ConnectToRegion (string region)

Connects to the Photon Cloud region of choice.

• static void Disconnect ()

Makes this client disconnect from the photon server, a process that leaves any room and calls OnDisconnected on
completion.

• static bool Reconnect ()

Can be used to reconnect to the master server after a disconnect.

• static void NetworkStatisticsReset ()

Resets the traffic stats and re-enables them.

• static string NetworkStatisticsToString ()

Only available when NetworkStatisticsEnabled was used to gather some stats.

• static int GetPing ()

The current roundtrip time to the photon server.

• static void FetchServerTimestamp ()

Refreshes the server timestamp (async operation, takes a roundtrip).

• static void SendAllOutgoingCommands ()

Can be used to immediately send the RPCs and Instantiates just called, so they are on their way to the other players.

• static bool CloseConnection (Player kickPlayer)

Request a client to disconnect/kick, which happens if EnableCloseConnection is set to true. Only the master client
can do this.

• static bool SetMasterClient (Player masterClientPlayer)

Asks the server to assign another player as Master Client of your current room.

• static bool JoinRandomRoom ()

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

• static bool JoinRandomRoom (Hashtable expectedCustomRoomProperties, byte expectedMaxPlayers)

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

• static bool JoinRandomRoom (Hashtable expectedCustomRoomProperties, byte expectedMaxPlayers,
MatchmakingMode matchingType, TypedLobby typedLobby, string sqlLobbyFilter, string[] expected←↩

Users=null)

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

• static bool JoinRandomOrCreateRoom (Hashtable expectedCustomRoomProperties=null, byte expected←↩

MaxPlayers=0, MatchmakingMode matchingType=MatchmakingMode.FillRoom, TypedLobby typed←↩

Lobby=null, string sqlLobbyFilter=null, string roomName=null, RoomOptions roomOptions=null, string[]
expectedUsers=null)

Attempts to join a room that matches the specified filter and creates a room if none found.

• static bool CreateRoom (string roomName, RoomOptions roomOptions=null, TypedLobby typedLobby=null,
string[] expectedUsers=null)

Creates a new room. Will callback: OnCreatedRoom and OnJoinedRoom or OnCreateRoomFailed.

• static bool JoinOrCreateRoom (string roomName, RoomOptions roomOptions, TypedLobby typedLobby,
string[] expectedUsers=null)

Joins a specific room by name and creates it on demand. Will callback: OnJoinedRoom or OnJoinRoomFailed.

• static bool JoinRoom (string roomName, string[] expectedUsers=null)

Joins a room by name. Will callback: OnJoinedRoom or OnJoinRoomFailed.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 265

• static bool RejoinRoom (string roomName)

Rejoins a room by roomName (using the userID internally to return). Will callback: OnJoinedRoom or OnJoinRoom←↩

Failed.

• static bool ReconnectAndRejoin ()

When the client lost connection during gameplay, this method attempts to reconnect and rejoin the room.

• static bool LeaveRoom (bool becomeInactive=true)

Leave the current room and return to the Master Server where you can join or create rooms (see remarks).

• static bool JoinLobby ()

On MasterServer this joins the default lobby which list rooms currently in use.

• static bool JoinLobby (TypedLobby typedLobby)

On a Master Server you can join a lobby to get lists of available rooms.

• static bool LeaveLobby ()

Leave a lobby to stop getting updates about available rooms.

• static bool FindFriends (string[] friendsToFind)

Requests the rooms and online status for a list of friends and saves the result in PhotonNetwork.Friends.

• static bool GetCustomRoomList (TypedLobby typedLobby, string sqlLobbyFilter)

Fetches a custom list of games from the server, matching a (non-empty) SQL-like filter. Triggers OnRoomListUpdate
callback.

• static bool SetPlayerCustomProperties (Hashtable customProperties)

Sets this (local) player's properties and synchronizes them to the other players (don't modify them directly).

• static void RemovePlayerCustomProperties (string[] customPropertiesToDelete)

Locally removes Custom Properties of "this" player. Important: This does not synchronize the change! Useful when
you switch rooms.

• static bool RaiseEvent (byte eventCode, object eventContent, RaiseEventOptions raiseEventOptions, Send←↩

Options sendOptions)

Sends fully customizable events in a room. Events consist of at least an EventCode (0..199) and can have content.

• static bool AllocateViewID (PhotonView view)

Allocates a viewID for the current/local player.

• static bool AllocateSceneViewID (PhotonView view)
• static bool AllocateRoomViewID (PhotonView view)

Enables the Master Client to allocate a viewID for room objects.

• static int AllocateViewID (bool roomObject)

Allocates a viewID for the current/local player or the room.

• static int AllocateViewID (int ownerId)

Allocates a viewID for the current/local player or the room.

• static GameObject Instantiate (string prefabName, Vector3 position, Quaternion rotation, byte group=0,
object[] data=null)

• static GameObject InstantiateSceneObject (string prefabName, Vector3 position, Quaternion rotation, byte
group=0, object[] data=null)

• static GameObject InstantiateRoomObject (string prefabName, Vector3 position, Quaternion rotation, byte
group=0, object[] data=null)

• static void Destroy (PhotonView targetView)

Network-Destroy the GameObject associated with the PhotonView, unless the PhotonView is static or not under this
client's control.

• static void Destroy (GameObject targetGo)

Network-Destroy the GameObject, unless it is static or not under this client's control.

• static void DestroyPlayerObjects (Player targetPlayer)

Network-Destroy all GameObjects, PhotonViews and their RPCs of targetPlayer. Can only be called on local player
(for "self") or Master Client (for anyone).

• static void DestroyPlayerObjects (int targetPlayerId)

Network-Destroy all GameObjects, PhotonViews and their RPCs of this player (by ID). Can only be called on local
player (for "self") or Master Client (for anyone).

• static void DestroyAll ()

Generated by Doxygen

266 Class Documentation

Network-Destroy all GameObjects, PhotonViews and their RPCs in the room. Removes anything buffered from the
server. Can only be called by Master Client (for anyone).

• static void RemoveRPCs (Player targetPlayer)

Remove all buffered RPCs from server that were sent by targetPlayer. Can only be called on local player (for "self")
or Master Client (for anyone).

• static void RemoveRPCs (PhotonView targetPhotonView)

Remove all buffered RPCs from server that were sent via targetPhotonView. The Master Client and the owner of the
targetPhotonView may call this.

• static HashSet< GameObject > FindGameObjectsWithComponent (Type type)

Finds the GameObjects with Components of a specific type (using FindObjectsOfType).

• static void SetInterestGroups (byte group, bool enabled)

Enable/disable receiving events from a given Interest Group.

• static void LoadLevel (int levelNumber)

This method wraps loading a level asynchronously and pausing network messages during the process.

• static void LoadLevel (string levelName)

This method wraps loading a level asynchronously and pausing network messages during the process.

• static bool WebRpc (string name, object parameters, bool sendAuthCookie=false)

This operation makes Photon call your custom web-service by name (path) with the given parameters.

• static void LoadOrCreateSettings (bool reload=false)
• static void AddCallbackTarget (object target)

Registers an object for callbacks for the implemented callback-interfaces.

• static void RemoveCallbackTarget (object target)

Removes the target object from callbacks for its implemented callback-interfaces.

• static void DestroyPlayerObjects (int playerId, bool localOnly)

Destroys all Instantiates and RPCs locally and (if not localOnly) sends EvDestroy(player) and clears related events in
the server buffer.

• static void DestroyAll (bool localOnly)
• static bool LocalCleanPhotonView (PhotonView view)
• static PhotonView GetPhotonView (int viewID)
• static void RegisterPhotonView (PhotonView netView)
• static void OpCleanActorRpcBuffer (int actorNumber)

Removes the RPCs of someone else (to be used as master). This won't clean any local caches. It just tells the server
to forget a player's RPCs and instantiates.

• static void OpRemoveCompleteCacheOfPlayer (int actorNumber)

Instead removing RPCs or Instantiates, this removed everything cached by the actor.

• static void OpRemoveCompleteCache ()
• static void CleanRpcBufferIfMine (PhotonView view)
• static void OpCleanRpcBuffer (PhotonView view)

Cleans server RPCs for PhotonView (without any further checks).

• static void RemoveRPCsInGroup (int group)

Remove all buffered RPCs from server that were sent in the targetGroup, if this is the Master Client or if this controls
the individual PhotonView.

• static bool RemoveBufferedRPCs (int viewId=0, string methodName=null, int[] callersActorNumbers=null)

Clear buffered RPCs based on filter parameters.

• static void SetLevelPrefix (byte prefix)

Sets level prefix for PhotonViews instantiated later on. Don't set it if you need only one!

• static void SetInterestGroups (byte[] disableGroups, byte[] enableGroups)

Enable/disable receiving on given Interest Groups (applied to PhotonViews).

• static void SetSendingEnabled (byte group, bool enabled)

Enable/disable sending on given group (applied to PhotonViews)

• static void SetSendingEnabled (byte[] disableGroups, byte[] enableGroups)

Enable/disable sending on given groups (applied to PhotonViews)

Generated by Doxygen

8.78 PhotonNetwork Class Reference 267

Static Public Attributes

• const string PunVersion = "2.39"

Version number of PUN. Used in the AppVersion, which separates your playerbase in matchmaking.

• static LoadBalancingClient NetworkingClient

The LoadBalancingClient is part of Photon Realtime and wraps up multiple servers and states for PUN.

• static readonly int MAX_VIEW_IDS = 1000

The maximum number of assigned PhotonViews per player (or scene). See the General Documentation topic "←↩

Limitations" on how to raise this limitation.

• const string ServerSettingsFileName = "PhotonServerSettings"

Name of the PhotonServerSettings file (used to load and by PhotonEditor to save new files).

• static ConnectMethod ConnectMethod = ConnectMethod.NotCalled

Tracks, which Connect method was called last.

• static PunLogLevel LogLevel = PunLogLevel.ErrorsOnly

Controls how verbose PUN is.

• static bool EnableCloseConnection = false

Used to enable reaction to CloseConnection events. Default: false.

• static float PrecisionForVectorSynchronization = 0.000099f

The minimum difference that a Vector2 or Vector3(e.g. a transforms rotation) needs to change before we send it via
a PhotonView's OnSerialize/ObservingComponent.

• static float PrecisionForQuaternionSynchronization = 1.0f

The minimum angle that a rotation needs to change before we send it via a PhotonView's OnSerialize/Observing←↩

Component.

• static float PrecisionForFloatSynchronization = 0.01f

The minimum difference between floats before we send it via a PhotonView's OnSerialize/ObservingComponent.

• static float MinimalTimeScaleToDispatchInFixedUpdate = -1f

Affects if the PhotonHandler dispatches incoming messages in LateUpdate or FixedUpdate (default).

• static bool UseRpcMonoBehaviourCache

While enabled, the MonoBehaviours on which we call RPCs are cached, avoiding costly GetComponents<Mono←↩

Behaviour>() calls.

• static bool RunRpcCoroutines = true

If an RPC method is implemented as coroutine, it gets started, unless this value is false.

• static int ObjectsInOneUpdate = 20

Defines how many updated produced by OnPhotonSerialize() are batched into one message.

• const int SyncViewId = 0
• const int SyncCompressed = 1
• const int SyncNullValues = 2
• const int SyncFirstValue = 3

Properties

• static string GameVersion [get, set]

Version number of your game. Setting this updates the AppVersion, which separates your playerbase in matchmaking.

• static string AppVersion [get]

Sent to Photon Server to specify the "Virtual AppId".

• static ServerSettings PhotonServerSettings [get]

Serialized server settings, written by the Setup Wizard for use in ConnectUsingSettings.

• static string? ServerAddress [get]

Currently used server address (no matter if master or game server).

• static string? CloudRegion [get]

Generated by Doxygen

268 Class Documentation

Currently used Cloud Region (if any). As long as the client is not on a Master Server or Game Server, the region is
not yet defined.

• static string? CurrentCluster [get]

The cluster name provided by the Name Server.

• static string BestRegionSummaryInPreferences [get, set]

Used to store and access the "Best Region Summary" in the Player Preferences.

• static bool IsConnected [get]

False until you connected to Photon initially. True immediately after Connect-call, in offline mode, while connected to
any server and even while switching servers.

• static bool IsConnectedAndReady [get]

A refined version of connected which is true only if your connection to the server is ready to accept operations like
join, leave, etc.

• static ClientState? NetworkClientState [get]

Directly provides the network-level client state, unless in OfflineMode.

• static ServerConnection?? Server [get]

The server (type) this client is currently connected or connecting to.

• static AuthenticationValues? AuthValues [get, set]

A user's authentication values used during connect.

• static TypedLobby CurrentLobby [get]

The lobby that will be used when PUN joins a lobby or creates a game. This is defined when joining a lobby or creating
rooms

• static Room? CurrentRoom [get]

Get the room we're currently in (also when in OfflineMode). Null if we aren't in any room.

• static Player LocalPlayer [get]

This client's Player instance is always available, unless the app shuts down.

• static string NickName [get, set]

Set to synchronize the player's nickname with everyone in the room(s) you enter. This sets PhotonNetwork.player.←↩

NickName.

• static Player[] PlayerList [get]

A sorted copy of the players-list of the current room. This is using Linq, so better cache this value. Update when
players join / leave.

• static Player[] PlayerListOthers [get]

A sorted copy of the players-list of the current room, excluding this client. This is using Linq, so better cache this
value. Update when players join / leave.

• static bool OfflineMode [get, set]

Offline mode can be set to re-use your multiplayer code in singleplayer game modes. When this is on PhotonNetwork
will not create any connections and there is near to no overhead. Mostly usefull for reusing RPC's and Photon←↩

Network.Instantiate

• static bool AutomaticallySyncScene [get, set]

Defines if all clients in a room should automatically load the same level as the Master Client.

• static bool EnableLobbyStatistics [get]

If enabled, the client will get a list of available lobbies from the Master Server.

• static bool InLobby [get]

True while this client is in a lobby.

• static int SendRate [get, set]

Defines how many times per second the PhotonHandler should send data, if any is queued. Default: 30.

• static int SerializationRate [get, set]

Defines how many times per second OnPhotonSerialize should be called on PhotonViews for controlled objects.

• static bool IsMessageQueueRunning [get, set]

Can be used to pause dispatching of incoming events (RPCs, Instantiates and anything else incoming).

• static double Time [get]

Photon network time, synched with the server.

• static int ServerTimestamp [get]

Generated by Doxygen

8.78 PhotonNetwork Class Reference 269

The current server's millisecond timestamp.

• static float? KeepAliveInBackground [get, set]

Defines how many seconds PUN keeps the connection after Unity's OnApplicationPause(true) call. Default: 60
seconds.

• static bool IsMasterClient [get]

Are we the master client?

• static Player MasterClient [get]

The Master Client of the current room or null (outside of rooms).

• static bool InRoom [get]

Is true while being in a room (NetworkClientState == ClientState.Joined).

• static int CountOfPlayersOnMaster [get]

The count of players currently looking for a room (available on MasterServer in 5sec intervals).

• static int CountOfPlayersInRooms [get]

Count of users currently playing your app in some room (sent every 5sec by Master Server). Use PhotonNetwork.←↩

PlayerList.Length or PhotonNetwork.CurrentRoom.PlayerCount to get the count of players in the room you're in!

• static int CountOfPlayers [get]

The count of players currently using this application (available on MasterServer in 5sec intervals).

• static int CountOfRooms [get]

The count of rooms currently in use (available on MasterServer in 5sec intervals).

• static bool NetworkStatisticsEnabled [get, set]

Enables or disables the collection of statistics about this client's traffic.

• static int ResentReliableCommands [get]

Count of commands that got repeated (due to local repeat-timing before an ACK was received).

• static bool CrcCheckEnabled [get, set]

Crc checks can be useful to detect and avoid issues with broken datagrams. Can be enabled while not connected.

• static int PacketLossByCrcCheck [get]

If CrcCheckEnabled, this counts the incoming packages that don't have a valid CRC checksum and got rejected.

• static int MaxResendsBeforeDisconnect [get, set]

Defines the number of times a reliable message can be resent before not getting an ACK for it will trigger a disconnect.
Default: 5.

• static int QuickResends [get, set]

In case of network loss, reliable messages can be repeated quickly up to 3 times.

• static bool UseAlternativeUdpPorts [get, set]

Replaced by ServerPortOverrides.

• static PhotonPortDefinition? ServerPortOverrides [get, set]

Defines overrides for server ports. Used per server-type if > 0. Important: If you change the transport protocol, adjust
the overrides, too.

• static PhotonView[] PhotonViews [get]

Gets the photon views.

• static NonAllocDictionary< int, PhotonView >.ValueIterator PhotonViewCollection [get]

Returns a new iterable collection of current photon views.

• static int ViewCount [get]
• static IPunPrefabPool PrefabPool [get, set]

An Object Pool can be used to keep and reuse instantiated object instances. Replaces Unity's default Instantiate and
Destroy methods.

• static float LevelLoadingProgress [get]

Represents the scene loading progress when using LoadLevel().

8.78.1 Detailed Description

The main class to use the PhotonNetwork plugin. This class is static.

Generated by Doxygen

270 Class Documentation

8.78.2 Member Function Documentation

8.78.2.1 AddCallbackTarget()

static void AddCallbackTarget (

object target) [static]

Registers an object for callbacks for the implemented callback-interfaces.

The covered callback interfaces are: IConnectionCallbacks, IMatchmakingCallbacks, ILobbyCallbacks, IInRoom←↩

Callbacks, IOnEventCallback and IWebRpcCallback.

See: .Net Callbacks

Parameters

target The object that registers to get callbacks from PUN's LoadBalancingClient.

8.78.2.2 AllocateRoomViewID()

static bool AllocateRoomViewID (

PhotonView view) [static]

Enables the Master Client to allocate a viewID for room objects.

Returns

True if a viewId was assigned. False if the PhotonView already had a non-zero viewID or if this client is not
the Master Client.

8.78.2.3 AllocateViewID() [1/3]

static int AllocateViewID (

bool roomObject) [static]

Allocates a viewID for the current/local player or the room.

Parameters

roomObject Use true, to allocate a room viewID and false to allocate a viewID for the local player.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 271

Returns

Returns a viewID (combined owner and sequential number) that can be assigned as PhotonView.ViewID.

8.78.2.4 AllocateViewID() [2/3]

static int AllocateViewID (

int ownerId) [static]

Allocates a viewID for the current/local player or the room.

Parameters

owner←↩

Id
ActorNumber to allocate a viewID for.

Returns

Returns a viewID (combined owner and sequential number) that can be assigned as PhotonView.ViewID.

8.78.2.5 AllocateViewID() [3/3]

static bool AllocateViewID (

PhotonView view) [static]

Allocates a viewID for the current/local player.

Returns

True if a viewId was assigned. False if the PhotonView already had a non-zero viewID.

8.78.2.6 CloseConnection()

static bool CloseConnection (

Player kickPlayer) [static]

Request a client to disconnect/kick, which happens if EnableCloseConnection is set to true. Only the master client
can do this.

Only the target player gets this event. That player will disconnect if EnableCloseConnection = true.

Parameters

kickPlayer The Player to kick.

Generated by Doxygen

272 Class Documentation

8.78.2.7 ConnectToBestCloudServer()

static bool ConnectToBestCloudServer () [static]

Connect to the Photon Cloud region with the lowest ping (on platforms that support Unity's Ping).

Will save the result of pinging all cloud servers in PlayerPrefs. Calling this the first time can take +-2 seconds. The
ping result can be overridden via PhotonNetwork.OverrideBestCloudServer(..) This call can take up to 2 seconds if
it is the first time you are using this, all cloud servers will be pinged to check for the best region.

The PUN Setup Wizard stores your appID in a settings file and applies a server address/port. To connect to
the Photon Cloud, a valid AppId must be in the settings file (shown in the Photon Cloud Dashboard). https←↩

://dashboard.photonengine.com

Connecting to the Photon Cloud might fail due to:

• Invalid AppId

• Network issues

• Invalid region

• Subscription CCU limit reached

• etc.

In general check out the DisconnectCause from the IConnectionCallbacks.OnDisconnected callback.

Returns

If this client is going to connect to cloud server based on ping. Even if true, this does not guarantee a
connection but the attempt is being made.

8.78.2.8 ConnectToMaster()

static bool ConnectToMaster (

string masterServerAddress,

int port,

string appID) [static]

Connect to a Photon Master Server by address, port, appID.

To connect to the Photon Cloud, a valid AppId must be in the settings file (shown in the Photon Cloud Dashboard).
https://dashboard.photonengine.com

Connecting to the Photon Cloud might fail due to:

• Invalid AppId

• Network issues

• Invalid region

• Subscription CCU limit reached

• etc.

In general check out the DisconnectCause from the IConnectionCallbacks.OnDisconnected callback.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 273

Parameters

masterServerAddress The server's address (either your own or Photon Cloud address).

port The server's port to connect to.

appID Your application ID (Photon Cloud provides you with a GUID for your game).

8.78.2.9 ConnectToRegion()

static bool ConnectToRegion (

string region) [static]

Connects to the Photon Cloud region of choice.

It's typically enough to define the region code ("eu", "us", etc). Connecting to a specific cluster may be necessary,
when regions get sharded and you support friends / invites.

In all other cases, you should not define a cluster as this allows the Name Server to distribute clients as needed. A
random, load balanced cluster will be selected.

The Name Server has the final say to assign a cluster as available. If the requested cluster is not available another
will be assigned.

Once connected, check the value of CurrentCluster.

8.78.2.10 ConnectUsingSettings()

static bool ConnectUsingSettings () [static]

Connect to Photon as configured in the PhotonServerSettings file.

Implement IConnectionCallbacks, to make your game logic aware of state changes. Especially, IConnection←↩

Callbacks.ConnectedToMasterServer is useful to react when the client can do matchmaking.

This method will disable OfflineMode (which won't destroy any instantiated GOs) and it will set IsMessageQueue←↩

Running to true.

Your Photon configuration is created by the PUN Wizard and contains the AppId, region for Photon Cloud games,
the server address among other things.

To ignore the settings file, set the relevant values and connect by calling ConnectToMaster, ConnectToRegion.

To connect to the Photon Cloud, a valid AppId must be in the settings file (shown in the Photon Cloud Dashboard).

Connecting to the Photon Cloud might fail due to:

• Invalid AppId

• Network issues

• Invalid region

• Subscription CCU limit reached

• etc.

In general check out the DisconnectCause from the IConnectionCallbacks.OnDisconnected callback.

Generated by Doxygen

274 Class Documentation

8.78.2.11 CreateRoom()

static bool CreateRoom (

string roomName,

RoomOptions roomOptions = null,

TypedLobby typedLobby = null,

string[] expectedUsers = null) [static]

Creates a new room. Will callback: OnCreatedRoom and OnJoinedRoom or OnCreateRoomFailed.

When successful, this calls the callbacks OnCreatedRoom and OnJoinedRoom (the latter, cause you join as first
player). In all error cases, OnCreateRoomFailed gets called.

Creating a room will fail if the room name is already in use or when the RoomOptions clashing with one another.
Check the EnterRoomParams reference for the various room creation options.

If you don't want to create a unique room-name, pass null or "" as name and the server will assign a roomName (a
GUID as string).

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

More about PUN matchmaking: https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-
and-lobby

Parameters

roomName Unique name of the room to create. Pass null or "" to make the server generate a name.

roomOptions Common options for the room like MaxPlayers, initial custom room properties and similar.
See RoomOptions type..

typedLobby If null, the room is automatically created in the currently used lobby (which is "default" when
you didn't join one explicitly).

expectedUsers Optional list of users (by UserId) who are expected to join this game and who you want to
block a slot for.

Returns

If the operation got queued and will be sent.

8.78.2.12 Destroy() [1/2]

static void Destroy (

GameObject targetGo) [static]

Network-Destroy the GameObject, unless it is static or not under this client's control.

Destroying a networked GameObject includes:

• Removal of the Instantiate call from the server's room buffer.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 275

• Removing RPCs buffered for PhotonViews that got created indirectly with the PhotonNetwork.Instantiate call.

• Sending a message to other clients to remove the GameObject also (affected by network lag).

Usually, when you leave a room, the GOs get destroyed automatically. If you have to destroy a GO while not in a
room, the Destroy is only done locally.

Destroying networked objects works only if they got created with PhotonNetwork.Instantiate(). Objects loaded with
a scene are ignored, no matter if they have PhotonView components.

The GameObject must be under this client's control:

• Instantiated and owned by this client.

• Instantiated objects of players who left the room are controlled by the Master Client.

• Room-owned game objects are controlled by the Master Client.

• GameObject can be destroyed while client is not in a room.

Returns

Nothing. Check error debug log for any issues.

8.78.2.13 Destroy() [2/2]

static void Destroy (

PhotonView targetView) [static]

Network-Destroy the GameObject associated with the PhotonView, unless the PhotonView is static or not under
this client's control.

Destroying a networked GameObject while in a Room includes:

• Removal of the Instantiate call from the server's room buffer.

• Removing RPCs buffered for PhotonViews that got created indirectly with the PhotonNetwork.Instantiate call.

• Sending a message to other clients to remove the GameObject also (affected by network lag).

Usually, when you leave a room, the GOs get destroyed automatically. If you have to destroy a GO while not in a
room, the Destroy is only done locally.

Destroying networked objects works only if they got created with PhotonNetwork.Instantiate(). Objects loaded with
a scene are ignored, no matter if they have PhotonView components.

The GameObject must be under this client's control:

• Instantiated and owned by this client.

• Instantiated objects of players who left the room are controlled by the Master Client.

• Room-owned game objects are controlled by the Master Client.

• GameObject can be destroyed while client is not in a room.

Returns

Nothing. Check error debug log for any issues.

Generated by Doxygen

276 Class Documentation

8.78.2.14 DestroyAll()

static void DestroyAll () [static]

Network-Destroy all GameObjects, PhotonViews and their RPCs in the room. Removes anything buffered from the
server. Can only be called by Master Client (for anyone).

Can only be called by Master Client (for anyone). Unlike the Destroy methods, this will remove anything from the
server's room buffer. If your game buffers anything beyond Instantiate and RPC calls, that will be cleaned as well
from server.

Destroying all includes:

• Remove anything from the server's room buffer (Instantiate, RPCs, anything buffered).

• Sending a message to other clients to destroy everything locally, too (affected by network lag).

Destroying networked objects works only if they got created with PhotonNetwork.Instantiate(). Objects loaded with
a scene are ignored, no matter if they have PhotonView components.

Returns

Nothing. Check error debug log for any issues.

8.78.2.15 DestroyPlayerObjects() [1/3]

static void DestroyPlayerObjects (

int playerId,

bool localOnly) [static]

Destroys all Instantiates and RPCs locally and (if not localOnly) sends EvDestroy(player) and clears related events
in the server buffer.

8.78.2.16 DestroyPlayerObjects() [2/3]

static void DestroyPlayerObjects (

int targetPlayerId) [static]

Network-Destroy all GameObjects, PhotonViews and their RPCs of this player (by ID). Can only be called on local
player (for "self") or Master Client (for anyone).

Destroying a networked GameObject includes:

• Removal of the Instantiate call from the server's room buffer.

• Removing RPCs buffered for PhotonViews that got created indirectly with the PhotonNetwork.Instantiate call.

• Sending a message to other clients to remove the GameObject also (affected by network lag).

Destroying networked objects works only if they got created with PhotonNetwork.Instantiate(). Objects loaded with
a scene are ignored, no matter if they have PhotonView components.

Returns

Nothing. Check error debug log for any issues.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 277

8.78.2.17 DestroyPlayerObjects() [3/3]

static void DestroyPlayerObjects (

Player targetPlayer) [static]

Network-Destroy all GameObjects, PhotonViews and their RPCs of targetPlayer. Can only be called on local player
(for "self") or Master Client (for anyone).

Destroying a networked GameObject includes:

• Removal of the Instantiate call from the server's room buffer.

• Removing RPCs buffered for PhotonViews that got created indirectly with the PhotonNetwork.Instantiate call.

• Sending a message to other clients to remove the GameObject also (affected by network lag).

Destroying networked objects works only if they got created with PhotonNetwork.Instantiate(). Objects loaded with
a scene are ignored, no matter if they have PhotonView components.

Returns

Nothing. Check error debug log for any issues.

8.78.2.18 Disconnect()

static void Disconnect () [static]

Makes this client disconnect from the photon server, a process that leaves any room and calls OnDisconnected on
completion.

When you disconnect, the client will send a "disconnecting" message to the server. This speeds up leave/disconnect
messages for players in the same room as you (otherwise the server would timeout this client's connection). When
used in OfflineMode, the state-change and event-call OnDisconnected are immediate. Offline mode is set to false
as well. Once disconnected, the client can connect again. Use ConnectUsingSettings.

8.78.2.19 FetchServerTimestamp()

static void FetchServerTimestamp () [static]

Refreshes the server timestamp (async operation, takes a roundtrip).

Can be useful if a bad connection made the timestamp unusable or imprecise.

8.78.2.20 FindFriends()

static bool FindFriends (

string[] friendsToFind) [static]

Requests the rooms and online status for a list of friends and saves the result in PhotonNetwork.Friends.

Works only on Master Server to find the rooms played by a selected list of users.

The result will be stored in PhotonNetwork.Friends when available. That list is initialized on first use of OpFind←↩

Friends (before that, it is null). To refresh the list, call FindFriends again (in 5 seconds or 10 or 20).

Users identify themselves by setting a unique userId in the PhotonNetwork.AuthValues. See remarks of
AuthenticationValues for info about how this is set and used.

The list of friends must be fetched from some other source (not provided by Photon).

Internal: The server response includes 2 arrays of info (each index matching a friend from the request):
ParameterCode.FindFriendsResponseOnlineList = bool[] of online states ParameterCode.FindFriendsResponseRoomIdList
= string[] of room names (empty string if not in a room)

Generated by Doxygen

278 Class Documentation

Parameters

friendsToFind Array of friend (make sure to use unique NickName or AuthValues).

Returns

If the operation could be sent (requires connection, only one request is allowed at any time). Always false in
offline mode.

8.78.2.21 FindGameObjectsWithComponent()

static HashSet<GameObject> FindGameObjectsWithComponent (

Type type) [static]

Finds the GameObjects with Components of a specific type (using FindObjectsOfType).

Parameters

type Type must be a Component

Returns

HashSet with GameObjects that have a specific type of Component.

8.78.2.22 GetCustomRoomList()

static bool GetCustomRoomList (

TypedLobby typedLobby,

string sqlLobbyFilter) [static]

Fetches a custom list of games from the server, matching a (non-empty) SQL-like filter. Triggers OnRoomListUpdate
callback.

Operation is only available for lobbies of type SqlLobby and the filter can not be empty. It will check those conditions
and fail locally, returning false. This is an async request.

Note: You don't have to join a lobby to query it. Rooms need to be "attached" to a lobby, which can be done via the
typedLobby parameter in CreateRoom, JoinOrCreateRoom, etc..

When done, OnRoomListUpdate gets called.

https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-and-lobby/::sql_lobby_type

Parameters

typedLobby The lobby to query. Has to be of type SqlLobby.

sqlLobbyFilter The sql query statement.
Generated by Doxygen

8.78 PhotonNetwork Class Reference 279

Returns

If the operation could be sent (has to be connected).

8.78.2.23 GetPing()

static int GetPing () [static]

The current roundtrip time to the photon server.

Returns

Roundtrip time (to server and back).

8.78.2.24 JoinLobby() [1/2]

static bool JoinLobby () [static]

On MasterServer this joins the default lobby which list rooms currently in use.

The room list is sent and refreshed by the server using ILobbyCallbacks.OnRoomListUpdate.

Per room you should check if it's full or not before joining. Photon also lists rooms that are full, unless you close and
hide them (room.open = false and room.visible = false).

In best case, you make your clients join random games, as described here: https://doc.photonengine.com/en-
us/pun/v2/lobby-and-matchmaking/matchmaking-and-lobby

You can show your current players and room count without joining a lobby (but you must be on the master server).
Use: CountOfPlayers, CountOfPlayersOnMaster, CountOfPlayersInRooms and CountOfRooms.

You can use more than one lobby to keep the room lists shorter. See JoinLobby(TypedLobby lobby). When creating
new rooms, they will be "attached" to the currently used lobby or the default lobby.

You can use JoinRandomRoom without being in a lobby!

Generated by Doxygen

280 Class Documentation

8.78.2.25 JoinLobby() [2/2]

static bool JoinLobby (

TypedLobby typedLobby) [static]

On a Master Server you can join a lobby to get lists of available rooms.

The room list is sent and refreshed by the server using ILobbyCallbacks.OnRoomListUpdate.

Any client can "make up" any lobby on the fly. Splitting rooms into multiple lobbies will keep each list shorter.
However, having too many lists might ruin the matchmaking experience.

In best case, you create a limited number of lobbies. For example, create a lobby per game-mode: "koth" for king of
the hill and "ffa" for free for all, etc.

There is no listing of lobbies at the moment.

Sql-typed lobbies offer a different filtering model for random matchmaking. This might be more suited for skillbased-
games. However, you will also need to follow the conventions for naming filterable properties in sql-lobbies! Both is
explained in the matchmaking doc linked below.

In best case, you make your clients join random games, as described here: https://doc.photonengine.com/en-
us/realtime/current/reference/matchmaking-and-lobby

Per room you should check if it's full or not before joining. Photon does list rooms that are full, unless you close and
hide them (room.open = false and room.visible = false).

You can show your games current players and room count without joining a lobby (but you must be on the master
server). Use: CountOfPlayers, CountOfPlayersOnMaster, CountOfPlayersInRooms and CountOfRooms.

When creating new rooms, they will be "attached" to the currently used lobby or the default lobby.

You can use JoinRandomRoom without being in a lobby!

Parameters

typedLobby A typed lobby to join (must have name and type).

8.78.2.26 JoinOrCreateRoom()

static bool JoinOrCreateRoom (

string roomName,

RoomOptions roomOptions,

TypedLobby typedLobby,

string[] expectedUsers = null) [static]

Joins a specific room by name and creates it on demand. Will callback: OnJoinedRoom or OnJoinRoomFailed.

Useful when players make up a room name to meet in: All involved clients call the same method and whoever is
first, also creates the room.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 281

When successful, the client will enter the specified room. The client which creates the room, will callback both
OnCreatedRoom and OnJoinedRoom. Clients that join an existing room will only callback OnJoinedRoom. In all
error cases, OnJoinRoomFailed gets called.

Joining a room will fail, if the room is full, closed or when the user already is present in the room (checked by userId).

To return to a room, use OpRejoinRoom.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

If you set room properties in roomOptions, they get ignored when the room is existing already. This avoids changing
the room properties by late joining players.

You can define an array of expectedUsers, to block player slots in the room for these users. The corresponding
feature in Photon is called "Slot Reservation" and can be found in the doc pages.

More about PUN matchmaking: https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-
and-lobby

Parameters

roomName Name of the room to join. Must be non null.

roomOptions Options for the room, in case it does not exist yet. Else these values are ignored.

typedLobby Lobby you want a new room to be listed in. Ignored if the room was existing and got joined.

expectedUsers Optional list of users (by UserId) who are expected to join this game and who you want to
block a slot for.

Returns

If the operation got queued and will be sent.

8.78.2.27 JoinRandomOrCreateRoom()

static bool JoinRandomOrCreateRoom (

Hashtable expectedCustomRoomProperties = null,

byte expectedMaxPlayers = 0,

MatchmakingMode matchingType = MatchmakingMode.FillRoom,

TypedLobby typedLobby = null,

string sqlLobbyFilter = null,

string roomName = null,

RoomOptions roomOptions = null,

string[] expectedUsers = null) [static]

Attempts to join a room that matches the specified filter and creates a room if none found.

This operation is a combination of filter-based random matchmaking with the option to create a new room, if no
fitting room exists. The benefit of that is that the room creation is done by the same operation and the room can be
found by the very next client, looking for similar rooms.

There are separate parameters for joining and creating a room.

Generated by Doxygen

282 Class Documentation

This method can only be called while connected to a Master Server. This client's State is set to ClientState.Joining
immediately.

Either IMatchmakingCallbacks.OnJoinedRoom or IMatchmakingCallbacks.OnCreatedRoom gets called.

Should the creation on the Master Server, IMatchmakingCallbacks.OnJoinRandomFailed gets called. Should the
"join" on the Game Server fail, IMatchmakingCallbacks.OnJoinRoomFailed gets called.

Check the return value to make sure the operation will be called on the server. Note: There will be no callbacks if
this method returned false.

Returns

If the operation will be sent (requires connection to Master Server).

8.78.2.28 JoinRandomRoom() [1/3]

static bool JoinRandomRoom () [static]

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

Used for random matchmaking. You can join any room or one with specific properties defined in opJoinRandom←↩

RoomParams.

This operation fails if no rooms are fitting or available (all full, closed, in another lobby or not visible). It may also fail
when actually joining the room which was found. Rooms may close, become full or empty anytime.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

More about PUN matchmaking: https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-
and-lobby

8.78.2.29 JoinRandomRoom() [2/3]

static bool JoinRandomRoom (

Hashtable expectedCustomRoomProperties,

byte expectedMaxPlayers) [static]

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

Used for random matchmaking. You can join any room or one with specific properties defined in opJoinRandom←↩

RoomParams.

This operation fails if no rooms are fitting or available (all full, closed, in another lobby or not visible). It may also fail
when actually joining the room which was found. Rooms may close, become full or empty anytime.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

More about PUN matchmaking: https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-
and-lobby

Generated by Doxygen

8.78 PhotonNetwork Class Reference 283

Parameters

expectedCustomRoomProperties Filters for rooms that match these custom properties (string keys and
values). To ignore, pass null.

expectedMaxPlayers Filters for a particular maxplayer setting. Use 0 to accept any maxPlayer
value.

Returns

If the operation got queued and will be sent.

8.78.2.30 JoinRandomRoom() [3/3]

static bool JoinRandomRoom (

Hashtable expectedCustomRoomProperties,

byte expectedMaxPlayers,

MatchmakingMode matchingType,

TypedLobby typedLobby,

string sqlLobbyFilter,

string[] expectedUsers = null) [static]

Joins a random room that matches the filter. Will callback: OnJoinedRoom or OnJoinRandomFailed.

Used for random matchmaking. You can join any room or one with specific properties defined in opJoinRandom←↩

RoomParams.

This operation fails if no rooms are fitting or available (all full, closed, in another lobby or not visible). It may also fail
when actually joining the room which was found. Rooms may close, become full or empty anytime.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

More about PUN matchmaking: https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-
and-lobby

Parameters

expectedCustomRoomProperties Filters for rooms that match these custom properties (string keys and
values). To ignore, pass null.

expectedMaxPlayers Filters for a particular maxplayer setting. Use 0 to accept any maxPlayer
value.

matchingType Selects one of the available matchmaking algorithms. See
MatchmakingMode enum for options.

typedLobby The lobby in which you want to lookup a room. Pass null, to use the default
lobby. This does not join that lobby and neither sets the lobby property.

sqlLobbyFilter A filter-string for SQL-typed lobbies.

expectedUsers Optional list of users (by UserId) who are expected to join this game and
who you want to block a slot for.

Generated by Doxygen

284 Class Documentation

Returns

If the operation got queued and will be sent.

8.78.2.31 JoinRoom()

static bool JoinRoom (

string roomName,

string[] expectedUsers = null) [static]

Joins a room by name. Will callback: OnJoinedRoom or OnJoinRoomFailed.

Useful when using lobbies or when players follow friends or invite each other.

When successful, the client will enter the specified room and callback via OnJoinedRoom. In all error cases, On←↩

JoinRoomFailed gets called.

Joining a room will fail if the room is full, closed, not existing or when the user already is present in the room (checked
by userId).

To return to a room, use OpRejoinRoom. When players invite each other and it's unclear who's first to respond, use
OpJoinOrCreateRoom instead.

This method can only be called while the client is connected to a Master Server so you should implement the
callback OnConnectedToMaster. Check the return value to make sure the operation will be called on the server.
Note: There will be no callbacks if this method returned false.

More about PUN matchmaking: https://doc.photonengine.com/en-us/pun/v2/lobby-and-matchmaking/matchmaking-
and-lobby

OnJoinRoomFailed OnJoinedRoom

Parameters

roomName Unique name of the room to join.

expectedUsers Optional list of users (by UserId) who are expected to join this game and who you want to
block a slot for.

Returns

If the operation got queued and will be sent.

8.78.2.32 LeaveLobby()

static bool LeaveLobby () [static]

Leave a lobby to stop getting updates about available rooms.

This does not reset PhotonNetwork.lobby! This allows you to join this particular lobby later easily.

The values CountOfPlayers, CountOfPlayersOnMaster, CountOfPlayersInRooms and CountOfRooms are received
even without being in a lobby.

You can use JoinRandomRoom without being in a lobby.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 285

8.78.2.33 LeaveRoom()

static bool LeaveRoom (

bool becomeInactive = true) [static]

Leave the current room and return to the Master Server where you can join or create rooms (see remarks).

This will clean up all (network) GameObjects with a PhotonView, unless you changed autoCleanUp to false. Returns
to the Master Server.

In OfflineMode, the local "fake" room gets cleaned up and OnLeftRoom gets called immediately.

In a room with playerTTL < 0, LeaveRoom just turns a client inactive. The player stays in the room's player list
and can return later on. Setting becomeInactive to false deliberately, means to "abandon" the room, despite the
playerTTL allowing you to come back.

In a room with playerTTL == 0, become inactive has no effect (clients are removed from the room right away).

Parameters

becomeInactive If this client becomes inactive in a room with playerTTL < 0. Defaults to true.

8.78.2.34 LoadLevel() [1/2]

static void LoadLevel (

int levelNumber) [static]

This method wraps loading a level asynchronously and pausing network messages during the process.

While loading levels in a networked game, it makes sense to not dispatch messages received by other players.
LoadLevel takes care of that by setting PhotonNetwork.IsMessageQueueRunning = false until the scene loaded.

To sync the loaded level in a room, set PhotonNetwork.AutomaticallySyncScene to true. The Master Client of a
room will then sync the loaded level with every other player in the room. Note that this works only for a single active
scene and that reloading the scene is not supported. The Master Client will actually reload a scene but other clients
won't.

You should make sure you don't fire RPCs before you load another scene (which doesn't contain the same Game←↩

Objects and PhotonViews).

LoadLevel uses SceneManager.LoadSceneAsync().

Check the progress of the LevelLoading using PhotonNetwork.LevelLoadingProgress.

Calling LoadLevel before the previous scene finished loading is not recommended. If AutomaticallySyncScene is
enabled, PUN cancels the previous load (and prevent that from becoming the active scene). If AutomaticallySync←↩

Scene is off, the previous scene loading can finish. In both cases, a new scene is loaded locally.

Parameters

levelNumber Build-index number of the level to load. When using level numbers, make sure they are identical
on all clients.

Generated by Doxygen

286 Class Documentation

8.78.2.35 LoadLevel() [2/2]

static void LoadLevel (

string levelName) [static]

This method wraps loading a level asynchronously and pausing network messages during the process.

While loading levels in a networked game, it makes sense to not dispatch messages received by other players.
LoadLevel takes care of that by setting PhotonNetwork.IsMessageQueueRunning = false until the scene loaded.

To sync the loaded level in a room, set PhotonNetwork.AutomaticallySyncScene to true. The Master Client of a
room will then sync the loaded level with every other player in the room. Note that this works only for a single active
scene and that reloading the scene is not supported. The Master Client will actually reload a scene but other clients
won't.

You should make sure you don't fire RPCs before you load another scene (which doesn't contain the same Game←↩

Objects and PhotonViews).

LoadLevel uses SceneManager.LoadSceneAsync().

Check the progress of the LevelLoading using PhotonNetwork.LevelLoadingProgress.

Calling LoadLevel before the previous scene finished loading is not recommended. If AutomaticallySyncScene is
enabled, PUN cancels the previous load (and prevent that from becoming the active scene). If AutomaticallySync←↩

Scene is off, the previous scene loading can finish. In both cases, a new scene is loaded locally.

Parameters

levelName Name of the level to load. Make sure it's available to all clients in the same room.

8.78.2.36 NetworkStatisticsReset()

static void NetworkStatisticsReset () [static]

Resets the traffic stats and re-enables them.

8.78.2.37 NetworkStatisticsToString()

static string NetworkStatisticsToString () [static]

Only available when NetworkStatisticsEnabled was used to gather some stats.

Returns

A string with vital networking statistics.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 287

8.78.2.38 OpCleanActorRpcBuffer()

static void OpCleanActorRpcBuffer (

int actorNumber) [static]

Removes the RPCs of someone else (to be used as master). This won't clean any local caches. It just tells the
server to forget a player's RPCs and instantiates.

Parameters

actorNumber

8.78.2.39 OpCleanRpcBuffer()

static void OpCleanRpcBuffer (

PhotonView view) [static]

Cleans server RPCs for PhotonView (without any further checks).

8.78.2.40 OpRemoveCompleteCacheOfPlayer()

static void OpRemoveCompleteCacheOfPlayer (

int actorNumber) [static]

Instead removing RPCs or Instantiates, this removed everything cached by the actor.

Parameters

actorNumber

8.78.2.41 RaiseEvent()

static bool RaiseEvent (

byte eventCode,

object eventContent,

RaiseEventOptions raiseEventOptions,

SendOptions sendOptions) [static]

Sends fully customizable events in a room. Events consist of at least an EventCode (0..199) and can have content.

To receive events, implement IOnEventCallback in any class and register it via PhotonNetwork.AddCallbackTarget.
See IOnEventCallback.OnEvent.

Generated by Doxygen

288 Class Documentation

The eventContent is optional. If set, eventContent must be a "serializable type", something that the client can
turn into a byte[] basically. Most basic types and arrays of them are supported, including Unity's Vector2, Vector3,
Quaternion. Transforms are not supported.

You can turn a class into a "serializable type" by following the example in CustomTypes.cs.

The RaiseEventOptions have some (less intuitive) combination rules: If you set targetActors (an array of Player.ID
values), the receivers parameter gets ignored. When using event caching, the targetActors, receivers and interest←↩

Group can't be used. Buffered events go to all. When using cachingOption removeFromRoomCache, the eventCode
and content are actually not sent but used as filter.

Parameters

eventCode A byte identifying the type of event. You might want to use a code per action or to signal
which content can be expected. Allowed: 0..199.

eventContent Some serializable object like string, byte, integer, float (etc) and arrays of those.
Hashtables with byte keys are good to send variable content.

raiseEventOptions Allows more complex usage of events. If null, RaiseEventOptions.Default will be used
(which is fine).

sendOptions Send options for reliable, encryption etc..

Returns

False if event could not be sent.

8.78.2.42 Reconnect()

static bool Reconnect () [static]

Can be used to reconnect to the master server after a disconnect.

After losing connection, you can use this to connect a client to the region Master Server again. Cache the room
name you're in and use RejoinRoom(roomname) to return to a game. Common use case: Press the Lock Button
on a iOS device and you get disconnected immediately.

8.78.2.43 ReconnectAndRejoin()

static bool ReconnectAndRejoin () [static]

When the client lost connection during gameplay, this method attempts to reconnect and rejoin the room.

This method re-connects directly to the game server which was hosting the room PUN was in before. If the room
was shut down in the meantime, PUN will call OnJoinRoomFailed and return this client to the Master Server.

Check the return value, if this client will attempt a reconnect and rejoin (if the conditions are met). If Reconnect←↩

AndRejoin returns false, you can still attempt a Reconnect and Rejoin.

Similar to PhotonNetwork.RejoinRoom, this requires you to use unique IDs per player (the UserID).

Rejoining room will not send any player properties. Instead client will receive up-to-date ones from server. If you
want to set new player properties, do it once rejoined.

Returns

False, if there is no known room or game server to return to. Then, this client does not attempt the Reconnect←↩

AndRejoin.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 289

8.78.2.44 RejoinRoom()

static bool RejoinRoom (

string roomName) [static]

Rejoins a room by roomName (using the userID internally to return). Will callback: OnJoinedRoom or OnJoin←↩

RoomFailed.

After losing connection, you might be able to return to a room and continue playing, if the client is reconnecting fast
enough. Use Reconnect() and this method. Cache the room name you're in and use RejoinRoom(roomname) to
return to a game.

Note: To be able to Rejoin any room, you need to use UserIDs! You also need to set RoomOptions.PlayerTtl.

Important: Instantiate() and use of RPCs is not yet supported. The ownership rules of PhotonViews prevent a
seamless return to a game, if you use PhotonViews. Use Custom Properties and RaiseEvent with event caching
instead.

Common use case: Press the Lock Button on a iOS device and you get disconnected immediately.

Rejoining room will not send any player properties. Instead client will receive up-to-date ones from server. If you
want to set new player properties, do it once rejoined.

8.78.2.45 RemoveBufferedRPCs()

static bool RemoveBufferedRPCs (

int viewId = 0,

string methodName = null,

int[] callersActorNumbers = null) [static]

Clear buffered RPCs based on filter parameters.

Parameters

viewId The viewID of the PhotonView where the RPC has been called on. We actually need its
ViewID. If 0 (default) is provided, all PhotonViews/ViewIDs are considered.

methodName The RPC method name, if possible we will use its hash shortcut for efficiency. If none
(null or empty string) is provided all RPC method names are considered.

callersActorNumbers The actor numbers of the players who called/buffered the RPC. For example if two
players buffered the same RPC you can clear the buffered RPC of one and keep the
other. If none (null or empty array) is provided all senders are considered.

Returns

If the operation could be sent to the server.

8.78.2.46 RemoveCallbackTarget()

static void RemoveCallbackTarget (

object target) [static]

Generated by Doxygen

290 Class Documentation

Removes the target object from callbacks for its implemented callback-interfaces.

The covered callback interfaces are: IConnectionCallbacks, IMatchmakingCallbacks, ILobbyCallbacks, IInRoom←↩

Callbacks, IOnEventCallback and IWebRpcCallback.

See: .Net Callbacks

Parameters

target The object that unregisters from getting callbacks.

8.78.2.47 RemovePlayerCustomProperties()

static void RemovePlayerCustomProperties (

string[] customPropertiesToDelete) [static]

Locally removes Custom Properties of "this" player. Important: This does not synchronize the change! Useful when
you switch rooms.

Use this method with care. It can create inconsistencies of state between players! This only changes the player.←↩

customProperties locally. This can be useful to clear your Custom Properties between games (let's say they store
which turn you made, kills, etc).

SetPlayerCustomProperties() syncs and can be used to set values to null while in a room. That can be considered
"removed" while in a room.

If customPropertiesToDelete is null or has 0 entries, all Custom Properties are deleted (replaced with a new
Hashtable). If you specify keys to remove, those will be removed from the Hashtable but other keys are unaffected.

Parameters

customPropertiesToDelete List of Custom Property keys to remove. See remarks.

8.78.2.48 RemoveRPCs() [1/2]

static void RemoveRPCs (

PhotonView targetPhotonView) [static]

Remove all buffered RPCs from server that were sent via targetPhotonView. The Master Client and the owner of
the targetPhotonView may call this.

This method requires either:

• The targetPhotonView is owned by this client (Instantiated by it).

• This client is the Master Client (can remove any PhotonView's RPCs).

Generated by Doxygen

8.78 PhotonNetwork Class Reference 291

Parameters

targetPhotonView RPCs buffered for this PhotonView get removed from server buffer.

8.78.2.49 RemoveRPCs() [2/2]

static void RemoveRPCs (

Player targetPlayer) [static]

Remove all buffered RPCs from server that were sent by targetPlayer. Can only be called on local player (for "self")
or Master Client (for anyone).

This method requires either:

• This is the targetPlayer's client.

• This client is the Master Client (can remove any Player's RPCs).

If the targetPlayer calls RPCs at the same time that this is called, network lag will determine if those get buffered or
cleared like the rest.

Parameters

targetPlayer This player's buffered RPCs get removed from server buffer.

8.78.2.50 RemoveRPCsInGroup()

static void RemoveRPCsInGroup (

int group) [static]

Remove all buffered RPCs from server that were sent in the targetGroup, if this is the Master Client or if this controls
the individual PhotonView.

This method requires either:

• This client is the Master Client (can remove any RPCs per group).

• Any other client: each PhotonView is checked if it is under this client's control. Only those RPCs are removed.

Parameters

group Interest group that gets all RPCs removed.

Generated by Doxygen

292 Class Documentation

8.78.2.51 SendAllOutgoingCommands()

static void SendAllOutgoingCommands () [static]

Can be used to immediately send the RPCs and Instantiates just called, so they are on their way to the other players.

This could be useful if you do a RPC to load a level and then load it yourself. While loading, no RPCs are sent to
others, so this would delay the "load" RPC. You can send the RPC to "others", use this method, disable the message
queue (by IsMessageQueueRunning) and then load.

8.78.2.52 SetInterestGroups() [1/2]

static void SetInterestGroups (

byte group,

bool enabled) [static]

Enable/disable receiving events from a given Interest Group.

A client can tell the server which Interest Groups it's interested in. The server will only forward events for those
Interest Groups to that client (saving bandwidth and performance).

See: https://doc.photonengine.com/en-us/pun/v2/gameplay/interestgroups

See: https://doc.photonengine.com/en-us/pun/v2/demos-and-tutorials/package-demos/culling-demo

Parameters

group The interest group to affect.

enabled Sets if receiving from group to enabled (or not).

8.78.2.53 SetInterestGroups() [2/2]

static void SetInterestGroups (

byte[] disableGroups,

byte[] enableGroups) [static]

Enable/disable receiving on given Interest Groups (applied to PhotonViews).

A client can tell the server which Interest Groups it's interested in. The server will only forward events for those
Interest Groups to that client (saving bandwidth and performance).

See: https://doc.photonengine.com/en-us/pun/v2/gameplay/interestgroups

See: https://doc.photonengine.com/en-us/pun/v2/demos-and-tutorials/package-demos/culling-demo

Parameters

disableGroups The interest groups to disable (or null).

enableGroups The interest groups to enable (or null).

Generated by Doxygen

8.78 PhotonNetwork Class Reference 293

8.78.2.54 SetLevelPrefix()

static void SetLevelPrefix (

byte prefix) [static]

Sets level prefix for PhotonViews instantiated later on. Don't set it if you need only one!

Important: If you don't use multiple level prefixes, simply don't set this value. The default value is optimized out of
the traffic.

This won't affect existing PhotonViews (they can't be changed yet for existing PhotonViews).

Messages sent with a different level prefix will be received but not executed. This affects RPCs, Instantiates and
synchronization.

Be aware that PUN never resets this value, you'll have to do so yourself.

Parameters

prefix Max value is short.MaxValue = 255

8.78.2.55 SetMasterClient()

static bool SetMasterClient (

Player masterClientPlayer) [static]

Asks the server to assign another player as Master Client of your current room.

RPCs and RaiseEvent have the option to send messages only to the Master Client of a room. SetMasterClient
affects which client gets those messages.

This method calls an operation on the server to set a new Master Client, which takes a roundtrip. In case of success,
this client and the others get the new Master Client from the server.

SetMasterClient tells the server which current Master Client should be replaced with the new one. It will fail, if
anything switches the Master Client moments earlier. There is no callback for this error. All clients should get the
new Master Client assigned by the server anyways.

See also: PhotonNetwork.MasterClient

On v3 servers: The ReceiverGroup.MasterClient (usable in RPCs) is not affected by this (still points to lowest
player.ID in room). Avoid using this enum value (and send to a specific player instead).

If the current Master Client leaves, PUN will detect a new one by "lowest player ID". Implement OnMasterClient←↩

Switched to get a callback in this case. The PUN-selected Master Client might assign a new one.

Make sure you don't create an endless loop of Master-assigning! When selecting a custom Master Client, all clients
should point to the same player, no matter who actually assigns this player.

Locally the Master Client is immediately switched, while remote clients get an event. This means the game is
tempoarily without Master Client like when a current Master Client leaves.

When switching the Master Client manually, keep in mind that this user might leave and not do it's work, just like
any Master Client.

Generated by Doxygen

294 Class Documentation

Parameters

masterClientPlayer The player to become the next Master Client.

Returns

False when this operation couldn't be done. Must be in a room (not in OfflineMode).

8.78.2.56 SetPlayerCustomProperties()

static bool SetPlayerCustomProperties (

Hashtable customProperties) [static]

Sets this (local) player's properties and synchronizes them to the other players (don't modify them directly).

While in a room, your properties are synced with the other players. CreateRoom, JoinRoom and JoinRandomRoom
will all apply your player's custom properties when you enter the room. The whole Hashtable will get sent. Minimize
the traffic by setting only updated key/values.

If the Hashtable is null, the custom properties will be cleared. Custom properties are never cleared automatically,
so they carry over to the next room, if you don't change them.

Don't set properties by modifying PhotonNetwork.player.customProperties!

Parameters

customProperties Only string-typed keys will be used from this hashtable. If null, custom properties are all
deleted.

Returns

False if customProperties is empty or have zero string keys. True in offline mode. True if not in a room and
this is the local player (use this to cache properties to be sent when joining a room). Otherwise, returns if this
operation could be sent to the server.

8.78.2.57 SetSendingEnabled() [1/2]

static void SetSendingEnabled (

byte group,

bool enabled) [static]

Enable/disable sending on given group (applied to PhotonViews)

This does not interact with the Photon server-side. It's just a client-side setting to suppress updates, should they be
sent to one of the blocked groups.

This setting is not particularly useful, as it means that updates literally never reach the server or anyone else. Use
with care.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 295

Parameters

group The interest group to affect.

enabled Sets if sending to group is enabled (or not).

8.78.2.58 SetSendingEnabled() [2/2]

static void SetSendingEnabled (

byte[] disableGroups,

byte[] enableGroups) [static]

Enable/disable sending on given groups (applied to PhotonViews)

This does not interact with the Photon server-side. It's just a client-side setting to suppress updates, should they be
sent to one of the blocked groups.

This setting is not particularly useful, as it means that updates literally never reach the server or anyone else. Use
with care.

Parameters

enableGroups The interest groups to enable sending on (or null).

disableGroups The interest groups to disable sending on (or null).

8.78.2.59 WebRpc()

static bool WebRpc (

string name,

object parameters,

bool sendAuthCookie = false) [static]

This operation makes Photon call your custom web-service by name (path) with the given parameters.

This is a server-side feature which must be setup in the Photon Cloud Dashboard prior to use. https://doc.←↩

photonengine.com/en-us/pun/v2/gameplay/web-extensions/webrpc The Parameters will be converted into JSon for-
mat, so make sure your parameters are compatible.

See Photon.Realtime.IWebRpcCallback.OnWebRpcResponse on how to get a response.

It's important to understand that the OperationResponse only tells if the WebRPC could be called. The content of
the response contains any values your web-service sent and the error/success code. In case the web-service failed,
an error code and a debug message are usually inside the OperationResponse.

The class WebRpcResponse is a helper-class that extracts the most valuable content from the WebRPC response.

Example callback implementation:

Generated by Doxygen

296 Class Documentation

public void OnWebRpcResponse(OperationResponse response)
{

WebRpcResponse webResponse = new WebRpcResponse(operationResponse);
if (webResponse.ReturnCode != 0) { //...
}

switch (webResponse.Name) { //...
}
// and so on

}

8.78.3 Member Data Documentation

8.78.3.1 ConnectMethod

ConnectMethod ConnectMethod = ConnectMethod.NotCalled [static]

Tracks, which Connect method was called last.

ConnectToMaster sets this to ConnectToMaster. ConnectToRegion sets this to ConnectToRegion. ConnectTo←↩

BestCloudServer sets this to ConnectToBest. PhotonNetwork.ConnectUsingSettings will call either ConnectTo←↩

Master, ConnectToRegion or ConnectToBest, depending on the settings.

8.78.3.2 EnableCloseConnection

bool EnableCloseConnection = false [static]

Used to enable reaction to CloseConnection events. Default: false.

Using CloseConnection is a security risk, as exploiters can send the event as Master Client.

In best case, a game would implement this "disconnect others" independently from PUN in game-code with some
security checks.

8.78.3.3 LogLevel

PunLogLevel LogLevel = PunLogLevel.ErrorsOnly [static]

Controls how verbose PUN is.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 297

8.78.3.4 MAX_VIEW_IDS

readonly int MAX_VIEW_IDS = 1000 [static]

The maximum number of assigned PhotonViews per player (or scene). See the General Documentation topic "←↩

Limitations" on how to raise this limitation.

8.78.3.5 MinimalTimeScaleToDispatchInFixedUpdate

float MinimalTimeScaleToDispatchInFixedUpdate = -1f [static]

Affects if the PhotonHandler dispatches incoming messages in LateUpdate or FixedUpdate (default).

By default the PhotonHandler component dispatches incoming messages in FixedUpdate.

When the Time.timeScale is low, FixedUpdate is called less frequently up to a point where updates may get paused.
PUN can automatically dispatch messages in LateUpdate for low timeScale values (when Time.timeScale is lower
than this value).

PUN will use either FixedUpdate or LateUpdate but not both (as of v2.23).

When you use this value, be aware that Instantiates and RPCs execute with a changed timing within a frame. If
Instantiate is called from FixedUpdate, the physics engine seems to run for instantiated objects before the engine
calls Start() on them.

By default, this value is -1f, so there is no fallback to LateUpdate.

8.78.3.6 NetworkingClient

LoadBalancingClient NetworkingClient [static]

The LoadBalancingClient is part of Photon Realtime and wraps up multiple servers and states for PUN.

8.78.3.7 ObjectsInOneUpdate

int ObjectsInOneUpdate = 20 [static]

Defines how many updated produced by OnPhotonSerialize() are batched into one message.

A low number increases overhead, a high number might lead to fragmented messages.

8.78.3.8 PrecisionForFloatSynchronization

float PrecisionForFloatSynchronization = 0.01f [static]

The minimum difference between floats before we send it via a PhotonView's OnSerialize/ObservingComponent.

Generated by Doxygen

298 Class Documentation

8.78.3.9 PrecisionForQuaternionSynchronization

float PrecisionForQuaternionSynchronization = 1.0f [static]

The minimum angle that a rotation needs to change before we send it via a PhotonView's OnSerialize/Observing←↩

Component.

8.78.3.10 PrecisionForVectorSynchronization

float PrecisionForVectorSynchronization = 0.000099f [static]

The minimum difference that a Vector2 or Vector3(e.g. a transforms rotation) needs to change before we send it via
a PhotonView's OnSerialize/ObservingComponent.

Note that this is the sqrMagnitude. E.g. to send only after a 0.01 change on the Y-axix, we use 0.01f∗0.01f=0.0001f.
As a remedy against float inaccuracy we use 0.000099f instead of 0.0001f.

8.78.3.11 PunVersion

const string PunVersion = "2.39" [static]

Version number of PUN. Used in the AppVersion, which separates your playerbase in matchmaking.

8.78.3.12 RunRpcCoroutines

bool RunRpcCoroutines = true [static]

If an RPC method is implemented as coroutine, it gets started, unless this value is false.

As starting coroutines causes a little memnory garbage, you may want to disable this option but it is also good
enough to not return IEnumerable from methods with the attribite PunRPC.

8.78.3.13 ServerSettingsFileName

const string ServerSettingsFileName = "PhotonServerSettings" [static]

Name of the PhotonServerSettings file (used to load and by PhotonEditor to save new files).

Generated by Doxygen

8.78 PhotonNetwork Class Reference 299

8.78.3.14 UseRpcMonoBehaviourCache

bool UseRpcMonoBehaviourCache [static]

While enabled, the MonoBehaviours on which we call RPCs are cached, avoiding costly GetComponents<Mono←↩

Behaviour>() calls.

RPCs are called on the MonoBehaviours of a target PhotonView. Those have to be found via GetComponents.

When set this to true, the list of MonoBehaviours gets cached in each PhotonView. You can use photonView.←↩

RefreshRpcMonoBehaviourCache() to manually refresh a PhotonView's list of MonoBehaviours on demand (when
a new MonoBehaviour gets added to a networked GameObject, e.g.).

8.78.4 Property Documentation

8.78.4.1 AppVersion

string AppVersion [static], [get]

Sent to Photon Server to specify the "Virtual AppId".

Sent with the operation Authenticate. When using PUN, you should set the GameVersion or use
ConnectUsingSettings().

8.78.4.2 AuthValues

AuthenticationValues? AuthValues [static], [get], [set]

A user's authentication values used during connect.

Set these before calling Connect if you want custom authentication. These values set the userId, if and how that
userId gets verified (server-side), etc..

If authentication fails for any values, PUN will call your implementation of OnCustomAuthenticationFailed(string
debugMessage). See Photon.Realtime.IConnectionCallbacks.OnCustomAuthenticationFailed.

8.78.4.3 AutomaticallySyncScene

bool AutomaticallySyncScene [static], [get], [set]

Defines if all clients in a room should automatically load the same level as the Master Client.

When enabled, clients load the same scene that is active on the Master Client. When a client joins a room, the
scene gets loaded even before the callback OnJoinedRoom gets called.

To synchronize the loaded level, the Master Client should use PhotonNetwork.LoadLevel, which notifies the other
clients before starting to load the scene. If the Master Client loads a level directly via Unity's API, PUN will notify the
other players after the scene loading completed (using SceneManager.sceneLoaded).

Internally, a Custom Room Property is set for the loaded scene. On change, clients use LoadLevel if they are not in
the same scene.

Note that this works only for a single active scene and that reloading the scene is not supported. The Master Client
will actually reload a scene but other clients won't. To get everyone to reload, the game can send an RPC or event
to trigger the loading.

Generated by Doxygen

300 Class Documentation

8.78.4.4 BestRegionSummaryInPreferences

string BestRegionSummaryInPreferences [static], [get], [set]

Used to store and access the "Best Region Summary" in the Player Preferences.

Set this value to null before you connect, to discard the previously selected Best Region for the client.

8.78.4.5 CloudRegion

string? CloudRegion [static], [get]

Currently used Cloud Region (if any). As long as the client is not on a Master Server or Game Server, the region is
not yet defined.

8.78.4.6 CountOfPlayers

int CountOfPlayers [static], [get]

The count of players currently using this application (available on MasterServer in 5sec intervals).

8.78.4.7 CountOfPlayersInRooms

int CountOfPlayersInRooms [static], [get]

Count of users currently playing your app in some room (sent every 5sec by Master Server). Use PhotonNetwork.←↩

PlayerList.Length or PhotonNetwork.CurrentRoom.PlayerCount to get the count of players in the room you're in!

8.78.4.8 CountOfPlayersOnMaster

int CountOfPlayersOnMaster [static], [get]

The count of players currently looking for a room (available on MasterServer in 5sec intervals).

8.78.4.9 CountOfRooms

int CountOfRooms [static], [get]

The count of rooms currently in use (available on MasterServer in 5sec intervals).

Generated by Doxygen

8.78 PhotonNetwork Class Reference 301

8.78.4.10 CrcCheckEnabled

bool CrcCheckEnabled [static], [get], [set]

Crc checks can be useful to detect and avoid issues with broken datagrams. Can be enabled while not connected.

8.78.4.11 CurrentCluster

string? CurrentCluster [static], [get]

The cluster name provided by the Name Server.

The value is provided by the OpResponse for OpAuthenticate/OpAuthenticateOnce. See ConnectToRegion.

Null until set.

Note that the Name Server may assign another cluster, if the requested one is not configured or available.

8.78.4.12 CurrentLobby

TypedLobby CurrentLobby [static], [get]

The lobby that will be used when PUN joins a lobby or creates a game. This is defined when joining a lobby or
creating rooms

The default lobby uses an empty string as name. So when you connect or leave a room, PUN automatically gets
you into a lobby again.

Check PhotonNetwork.InLobby if the client is in a lobby. (masterServerAndLobby)

8.78.4.13 CurrentRoom

Room? CurrentRoom [static], [get]

Get the room we're currently in (also when in OfflineMode). Null if we aren't in any room.

LoadBalancing Client is not aware of the Photon Offline Mode, so never use PhotonNetwork.NetworkingClient.←↩

CurrentRoom will be null if you are using OffLine Mode, while PhotonNetwork.CurrentRoom will be set when
offlineMode is true

8.78.4.14 EnableLobbyStatistics

bool EnableLobbyStatistics [static], [get]

If enabled, the client will get a list of available lobbies from the Master Server.

Set this value before the client connects to the Master Server. While connected to the Master Server, a change has
no effect.

Implement OptionalInfoCallbacks.OnLobbyStatisticsUpdate, to get the list of used lobbies.

The lobby statistics can be useful if your title dynamically uses lobbies, depending (e.g.) on current player activity
or such. In this case, getting a list of available lobbies, their room-count and player-count can be useful info.

ConnectUsingSettings sets this to the PhotonServerSettings value.

Generated by Doxygen

302 Class Documentation

8.78.4.15 GameVersion

string GameVersion [static], [get], [set]

Version number of your game. Setting this updates the AppVersion, which separates your playerbase in matchmak-
ing.

In PUN, the GameVersion is only one component of the LoadBalancingClient.AppVersion. Setting the GameVersion
will also set the LoadBalancingClient.AppVersion to: value+'_'+ PhotonNetwork.PunVersion.

The AppVersion is used to split your playerbase as needed. One AppId may have various AppVersions and each is
a separate set of users for matchmaking.

The AppVersion gets sent in the "Authenticate" step. This means you can set the GameVersion right after calling
ConnectUsingSettings (e.g.) and the new value will be used on the server. Once the client is connected, authenti-
cation is done and the value won't be sent to the server anymore.

8.78.4.16 InLobby

bool InLobby [static], [get]

True while this client is in a lobby.

Implement IPunCallbacks.OnRoomListUpdate() for a notification when the list of rooms becomes available or up-
dated.

You are automatically leaving any lobby when you join a room! Lobbies only exist on the Master Server (whereas
rooms are handled by Game Servers).

8.78.4.17 InRoom

bool InRoom [static], [get]

Is true while being in a room (NetworkClientState == ClientState.Joined).

Aside from polling this value, game logic should implement IMatchmakingCallbacks in some class and react when
that gets called.

Many actions can only be executed in a room, like Instantiate or Leave, etc.
A client can join a room in offline mode. In that case, don't use LoadBalancingClient.InRoom, which does not cover
offline mode.

8.78.4.18 IsConnected

bool IsConnected [static], [get]

False until you connected to Photon initially. True immediately after Connect-call, in offline mode, while connected
to any server and even while switching servers.

It is recommended to use the IConnectionCallbacks to establish a connection workflow. Also have a look at Is←↩

ConnectedAndReady, which provides more info on when you can call operations at all.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 303

8.78.4.19 IsConnectedAndReady

bool IsConnectedAndReady [static], [get]

A refined version of connected which is true only if your connection to the server is ready to accept operations like
join, leave, etc.

8.78.4.20 IsMasterClient

bool IsMasterClient [static], [get]

Are we the master client?

8.78.4.21 IsMessageQueueRunning

bool IsMessageQueueRunning [static], [get], [set]

Can be used to pause dispatching of incoming events (RPCs, Instantiates and anything else incoming).

While IsMessageQueueRunning == false, the OnPhotonSerializeView calls are not done and nothing is sent by a
client. Also, incoming messages will be queued until you re-activate the message queue.

This can be useful if you first want to load a level, then go on receiving data of PhotonViews and RPCs. The client
will go on receiving and sending acknowledgements for incoming packages and your RPCs/Events. This adds "lag"
and can cause issues when the pause is longer, as all incoming messages are just queued.

8.78.4.22 KeepAliveInBackground

float? KeepAliveInBackground [static], [get], [set]

Defines how many seconds PUN keeps the connection after Unity's OnApplicationPause(true) call. Default: 60
seconds.

It's best practice to disconnect inactive apps/connections after a while but to also allow users to take calls, etc.. We
think a reasonable background timeout is 60 seconds.

To handle the timeout, implement: OnDisconnected(), as usual. Your application will "notice" the background dis-
connect when it becomes active again (running the Update() loop).

If you need to separate this case from others, you need to track if the app was in the background (there is no special
callback by PUN).

Info: PUN is running a "fallback thread" to send ACKs to the server, even when Unity is not calling Update() regularly.
This helps keeping the connection while loading scenes and assets and when the app is in the background.

Note: Some platforms (e.g. iOS) don't allow to keep a connection while the app is in background. In those cases,
this value does not change anything, the app immediately loses connection in background.

Unity's OnApplicationPause() callback is broken in some exports (Android) of some Unity versions. Make sure On←↩

ApplicationPause() gets the callbacks you expect on the platform you target! Check PhotonHandler.OnApplication←↩

Pause(bool pause) to see the implementation.

Generated by Doxygen

304 Class Documentation

8.78.4.23 LevelLoadingProgress

float LevelLoadingProgress [static], [get]

Represents the scene loading progress when using LoadLevel().

The value is 0 if the app never loaded a scene with LoadLevel(). During async scene loading, the value is between
0 and 1. Once any scene completed loading, it stays at 1 (signaling "done").

The level loading progress. Ranges from 0 to 1.

8.78.4.24 LocalPlayer

Player LocalPlayer [static], [get]

This client's Player instance is always available, unless the app shuts down.

Useful (e.g.) to set the Custom Player Properties or the NickName for this client anytime. When the client joins a
room, the Custom Properties and other values are synced.

8.78.4.25 MasterClient

Player MasterClient [static], [get]

The Master Client of the current room or null (outside of rooms).

Can be used as "authoritative" client/player to make descisions, run AI or other.

If the current Master Client leaves the room (leave/disconnect), the server will quickly assign someone else. If the
current Master Client times out (closed app, lost connection, etc), messages sent to this client are effectively lost for
the others! A timeout can take 10 seconds in which no Master Client is active.

Implement the method IPunCallbacks.OnMasterClientSwitched to be called when the Master Client switched.

Use PhotonNetwork.SetMasterClient, to switch manually to some other player / client.

With OfflineMode == true, this always returns the PhotonNetwork.player.

8.78.4.26 MaxResendsBeforeDisconnect

int MaxResendsBeforeDisconnect [static], [get], [set]

Defines the number of times a reliable message can be resent before not getting an ACK for it will trigger a discon-
nect. Default: 5.

Less resends mean quicker disconnects, while more can lead to much more lag without helping. Min: 3. Max: 10.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 305

8.78.4.27 NetworkClientState

ClientState? NetworkClientState [static], [get]

Directly provides the network-level client state, unless in OfflineMode.

In context of PUN, you should usually use IsConnected or IsConnectedAndReady.

This is the lower level connection state. Keep in mind that PUN uses more than one server, so the client may
become Disconnected, even though it's just switching servers.

While OfflineMode is true, this is ClientState.Joined (after create/join) or ConnectedToMasterServer in all other
cases.

8.78.4.28 NetworkStatisticsEnabled

bool NetworkStatisticsEnabled [static], [get], [set]

Enables or disables the collection of statistics about this client's traffic.

If you encounter issues with clients, the traffic stats are a good starting point to find solutions. Only with enabled
stats, you can use GetVitalStats

8.78.4.29 NickName

string NickName [static], [get], [set]

Set to synchronize the player's nickname with everyone in the room(s) you enter. This sets PhotonNetwork.player.←↩

NickName.

The NickName is just a nickname and does not have to be unique or backed up with some account.
Set the value any time (e.g. before you connect) and it will be available to everyone you play with.
Access the names of players by: Player.NickName.
PhotonNetwork.PlayerListOthers is a list of other players - each contains the NickName the remote player set.

8.78.4.30 OfflineMode

bool OfflineMode [static], [get], [set]

Offline mode can be set to re-use your multiplayer code in singleplayer game modes. When this is on PhotonNetwork
will not create any connections and there is near to no overhead. Mostly usefull for reusing RPC's and Photon←↩

Network.Instantiate

8.78.4.31 PacketLossByCrcCheck

int PacketLossByCrcCheck [static], [get]

If CrcCheckEnabled, this counts the incoming packages that don't have a valid CRC checksum and got rejected.

Generated by Doxygen

306 Class Documentation

8.78.4.32 PhotonServerSettings

ServerSettings PhotonServerSettings [static], [get]

Serialized server settings, written by the Setup Wizard for use in ConnectUsingSettings.

8.78.4.33 PhotonViewCollection

NonAllocDictionary<int, PhotonView>.ValueIterator PhotonViewCollection [static], [get]

Returns a new iterable collection of current photon views.

You can iterate over all PhotonViews in a simple foreach loop. To use this in a while-loop, assign the new iterator to
a variable and then call MoveNext on that.

8.78.4.34 PhotonViews

PhotonView [] PhotonViews [static], [get]

Gets the photon views.

This is an expensive operation as it returns a copy of the internal list.

The photon views.

8.78.4.35 PlayerList

Player [] PlayerList [static], [get]

A sorted copy of the players-list of the current room. This is using Linq, so better cache this value. Update when
players join / leave.

8.78.4.36 PlayerListOthers

Player [] PlayerListOthers [static], [get]

A sorted copy of the players-list of the current room, excluding this client. This is using Linq, so better cache this
value. Update when players join / leave.

Generated by Doxygen

8.78 PhotonNetwork Class Reference 307

8.78.4.37 PrefabPool

IPunPrefabPool PrefabPool [static], [get], [set]

An Object Pool can be used to keep and reuse instantiated object instances. Replaces Unity's default Instantiate
and Destroy methods.

Defaults to the DefaultPool type. To use a GameObject pool, implement IPunPrefabPool and assign it here. Prefabs
are identified by name.

8.78.4.38 QuickResends

int QuickResends [static], [get], [set]

In case of network loss, reliable messages can be repeated quickly up to 3 times.

When reliable messages get lost more than once, subsequent repeats are delayed a bit to allow the network to
recover.
With this option, the repeats 2 and 3 can be sped up. This can help avoid timeouts but also it increases the speed
in which gaps are closed.
When you set this, increase PhotonNetwork.MaxResendsBeforeDisconnect to 6 or 7.

8.78.4.39 ResentReliableCommands

int ResentReliableCommands [static], [get]

Count of commands that got repeated (due to local repeat-timing before an ACK was received).

If this value increases a lot, there is a good chance that a timeout disconnect will happen due to bad conditions.

8.78.4.40 SendRate

int SendRate [static], [get], [set]

Defines how many times per second the PhotonHandler should send data, if any is queued. Default: 30.

This value defines how often PUN will call the low level PhotonPeer to put queued outgoing messages into a
datagram to be sent. This is implemented in the PhotonHandler component, which integrates PUN into the Unity
game loop. The PhotonHandler.MaxDatagrams value defines how many datagrams can be sent in one iteration.

This value does not affect how often updates are written by PhotonViews. That is controlled by the Serialization←↩

Rate. To avoid send-delays for PhotonView updates, PUN will also send data at the end of frames that wrote data
in OnPhotonSerializeView, so sending may actually be more frequent than the SendRate.

Messages queued due to RPCs and RaiseEvent, will be sent with at least SendRate frequency. They are included,
when OnPhotonSerialize wrote updates and triggers early sending.

Setting this value does not adjust the SerializationRate anymore (as of PUN 2.24).

Sending less often will aggregate messages in datagrams, which avoids overhead on the network. It is also impor-
tant to not push too many datagrams per frame. Three to five seem to be the sweet spot.

Keep your target platform in mind: mobile networks are usually slower. WiFi is slower with more variance and bursts
of loss.

A low framerate (as in Update calls) will affect sending of messages.

Generated by Doxygen

308 Class Documentation

8.78.4.41 SerializationRate

int SerializationRate [static], [get], [set]

Defines how many times per second OnPhotonSerialize should be called on PhotonViews for controlled objects.

This value defines how often PUN will call OnPhotonSerialize on controlled network objects. This is implemented in
the PhotonHandler component, which integrates PUN into the Unity game loop.

The updates written in OnPhotonSerialize will be queued temporarily and sent in the next LateUpdate, so a high
SerializationRate also causes more sends. The idea is to keep the delay short during which written updates are
queued.

Calling RPCs will not trigger a send.

A low framerate will affect how frequent updates are written and how "on time" they are.

A lower rate takes up less performance but the receiving side needs to interpolate longer times between updates.

8.78.4.42 Server

ServerConnection?? Server [static], [get]

The server (type) this client is currently connected or connecting to.

Photon uses 3 different roles of servers: Name Server, Master Server and Game Server.

8.78.4.43 ServerAddress

string? ServerAddress [static], [get]

Currently used server address (no matter if master or game server).

8.78.4.44 ServerPortOverrides

PhotonPortDefinition? ServerPortOverrides [static], [get], [set]

Defines overrides for server ports. Used per server-type if > 0. Important: If you change the transport protocol,
adjust the overrides, too.

LoadBalancingClient.ServerPortOverrides

8.78.4.45 ServerTimestamp

int ServerTimestamp [static], [get]

The current server's millisecond timestamp.

This can be useful to sync actions and events on all clients in one room. The timestamp is based on the server's
Environment.TickCount.

It will overflow from a positive to a negative value every so often, so be careful to use only time-differences to check
the Time delta when things happen.

This is the basis for PhotonNetwork.Time.

Generated by Doxygen

8.79 PhotonPing Class Reference 309

8.78.4.46 Time

double Time [static], [get]

Photon network time, synched with the server.

v1.55
This time value depends on the server's Environment.TickCount. It is different per server but inside a Room, all
clients should have the same value (Rooms are on one server only).
This is not a DateTime!

Use this value with care:
It can start with any positive value.
It will "wrap around" from 4294967.295 to 0!

8.78.4.47 UseAlternativeUdpPorts

bool UseAlternativeUdpPorts [static], [get], [set]

Replaced by ServerPortOverrides.

8.79 PhotonPing Class Reference

Abstract implementation of PhotonPing, ase for pinging servers to find the "Best Region".

Inherits IDisposable.

Inherited by PingMono.

Public Member Functions

• virtual bool StartPing (string ip)
• virtual bool Done ()
• virtual void Dispose ()

Public Attributes

• string DebugString = ""
• bool Successful

8.79.1 Detailed Description

Abstract implementation of PhotonPing, ase for pinging servers to find the "Best Region".

Generated by Doxygen

310 Class Documentation

8.80 PhotonPortDefinition Struct Reference

Container for port definitions.

Public Attributes

• ushort NameServerPort

Typical ports: UDP: 5058 or 27000, TCP: 4533, WSS: 19093 or 443.

• ushort MasterServerPort

Typical ports: UDP: 5056 or 27002, TCP: 4530, WSS: 19090 or 443.

• ushort GameServerPort

Typical ports: UDP: 5055 or 27001, TCP: 4531, WSS: 19091 or 443.

Static Public Attributes

• static readonly PhotonPortDefinition AlternativeUdpPorts = new PhotonPortDefinition() { NameServerPort
= 27000, MasterServerPort = 27001, GameServerPort = 27002}

8.80.1 Detailed Description

Container for port definitions.

8.80.2 Member Data Documentation

8.80.2.1 GameServerPort

ushort GameServerPort

Typical ports: UDP: 5055 or 27001, TCP: 4531, WSS: 19091 or 443.

8.80.2.2 MasterServerPort

ushort MasterServerPort

Typical ports: UDP: 5056 or 27002, TCP: 4530, WSS: 19090 or 443.

8.80.2.3 NameServerPort

ushort NameServerPort

Typical ports: UDP: 5058 or 27000, TCP: 4533, WSS: 19093 or 443.

Generated by Doxygen

8.81 PhotonRigidbody2DView Class Reference 311

8.81 PhotonRigidbody2DView Class Reference

Inherits MonoBehaviourPun, and IPunObservable.

Public Member Functions

• void Awake ()
• void FixedUpdate ()
• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

Public Attributes

• bool m_SynchronizeVelocity = true
• bool m_SynchronizeAngularVelocity = false
• bool m_TeleportEnabled = false
• float m_TeleportIfDistanceGreaterThan = 3.0f

Additional Inherited Members

8.81.1 Member Function Documentation

8.81.1.1 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

This method will be called in scripts that are assigned as Observed component of a PhotonView.
PhotonNetwork.SerializationRate affects how often this method is called.
PhotonNetwork.SendRate affects how often packages are sent by this client.

Implementing this method, you can customize which data a PhotonView regularly synchronizes. Your code defines
what is being sent (content) and how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it is assigned to a PhotonView as Photon←↩

View.observed script.

To make use of this method, the PhotonStream is essential. It will be in "writing" mode" on the client that controls a
PhotonView (PhotonStream.IsWriting == true) and in "reading mode" on the remote clients that just receive that the
controlling client sends.

If you skip writing any value into the stream, PUN will skip the update. Used carefully, this can conserve bandwidth
and messages (which have a limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when the sender does not send any update. This
can't be used as "x-times per second Update()".

Implements IPunObservable.

Generated by Doxygen

312 Class Documentation

8.82 PhotonRigidbodyView Class Reference

Inherits MonoBehaviourPun, and IPunObservable.

Public Member Functions

• void Awake ()
• void FixedUpdate ()
• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

Public Attributes

• bool m_SynchronizeVelocity = true
• bool m_SynchronizeAngularVelocity = false
• bool m_TeleportEnabled = false
• float m_TeleportIfDistanceGreaterThan = 3.0f

Additional Inherited Members

8.82.1 Member Function Documentation

8.82.1.1 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

This method will be called in scripts that are assigned as Observed component of a PhotonView.
PhotonNetwork.SerializationRate affects how often this method is called.
PhotonNetwork.SendRate affects how often packages are sent by this client.

Implementing this method, you can customize which data a PhotonView regularly synchronizes. Your code defines
what is being sent (content) and how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it is assigned to a PhotonView as Photon←↩

View.observed script.

To make use of this method, the PhotonStream is essential. It will be in "writing" mode" on the client that controls a
PhotonView (PhotonStream.IsWriting == true) and in "reading mode" on the remote clients that just receive that the
controlling client sends.

If you skip writing any value into the stream, PUN will skip the update. Used carefully, this can conserve bandwidth
and messages (which have a limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when the sender does not send any update. This
can't be used as "x-times per second Update()".

Implements IPunObservable.

Generated by Doxygen

8.83 PhotonStatsGui Class Reference 313

8.83 PhotonStatsGui Class Reference

Basic GUI to show traffic and health statistics of the connection to Photon, toggled by shift+tab.

Inherits MonoBehaviour.

Public Member Functions

• void Start ()
• void Update ()

Checks for shift+tab input combination (to toggle statsOn).

• void OnGUI ()
• void TrafficStatsWindow (int windowID)

Public Attributes

• bool statsWindowOn = true

Shows or hides GUI (does not affect if stats are collected).

• bool statsOn = true

Option to turn collecting stats on or off (used in Update()).

• bool healthStatsVisible

Shows additional "health" values of connection.

• bool trafficStatsOn

Shows additional "lower level" traffic stats.

• bool buttonsOn

Show buttons to control stats and reset them.

• Rect statsRect = new Rect(0, 100, 200, 50)

Positioning rect for window.

• int WindowId = 100

Unity GUI Window ID (must be unique or will cause issues).

8.83.1 Detailed Description

Basic GUI to show traffic and health statistics of the connection to Photon, toggled by shift+tab.

The shown health values can help identify problems with connection losses or performance. Example: If the time
delta between two consecutive SendOutgoingCommands calls is a second or more, chances rise for a disconnect
being caused by this (because acknowledgements to the server need to be sent in due time).

8.83.2 Member Function Documentation

8.83.2.1 Update()

void Update ()

Checks for shift+tab input combination (to toggle statsOn).

Generated by Doxygen

314 Class Documentation

8.83.3 Member Data Documentation

8.83.3.1 buttonsOn

bool buttonsOn

Show buttons to control stats and reset them.

8.83.3.2 healthStatsVisible

bool healthStatsVisible

Shows additional "health" values of connection.

8.83.3.3 statsOn

bool statsOn = true

Option to turn collecting stats on or off (used in Update()).

8.83.3.4 statsRect

Rect statsRect = new Rect(0, 100, 200, 50)

Positioning rect for window.

8.83.3.5 statsWindowOn

bool statsWindowOn = true

Shows or hides GUI (does not affect if stats are collected).

Generated by Doxygen

8.84 PhotonStream Class Reference 315

8.83.3.6 trafficStatsOn

bool trafficStatsOn

Shows additional "lower level" traffic stats.

8.83.3.7 WindowId

int WindowId = 100

Unity GUI Window ID (must be unique or will cause issues).

8.84 PhotonStream Class Reference

This container is used in OnPhotonSerializeView() to either provide incoming data of a PhotonView or for you to
provide it.

Public Member Functions

• PhotonStream (bool write, object[] incomingData)

Creates a stream and initializes it. Used by PUN internally.
• void SetReadStream (object[] incomingData, int pos=0)
• object ReceiveNext ()

Read next piece of data from the stream when IsReading is true.
• object PeekNext ()

Read next piece of data from the stream without advancing the "current" item.
• void SendNext (object obj)

Add another piece of data to send it when IsWriting is true.
• bool CopyToListAndClear (List< object > target)
• object[] ToArray ()

Turns the stream into a new object[].
• void Serialize (ref bool myBool)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref int myInt)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref string value)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref char value)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref short value)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref float obj)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref Player obj)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref Vector3 obj)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref Vector2 obj)

Will read or write the value, depending on the stream's IsWriting value.
• void Serialize (ref Quaternion obj)

Will read or write the value, depending on the stream's IsWriting value.

Generated by Doxygen

316 Class Documentation

Properties

• bool IsWriting [get]

If true, this client should add data to the stream to send it.

• bool IsReading [get]

If true, this client should read data send by another client.

• int? Count [get]

Count of items in the stream.

8.84.1 Detailed Description

This container is used in OnPhotonSerializeView() to either provide incoming data of a PhotonView or for you to
provide it.

The IsWriting property will be true if this client is the "owner" of the PhotonView (and thus the GameObject). Add
data to the stream and it's sent via the server to the other players in a room. On the receiving side, IsWriting is false
and the data should be read.

Send as few data as possible to keep connection quality up. An empty PhotonStream will not be sent.

Use either Serialize() for reading and writing or SendNext() and ReceiveNext(). The latter two are just explicit read
and write methods but do about the same work as Serialize(). It's a matter of preference which methods you use.

8.84.2 Constructor & Destructor Documentation

8.84.2.1 PhotonStream()

PhotonStream (

bool write,

object[] incomingData)

Creates a stream and initializes it. Used by PUN internally.

8.84.3 Member Function Documentation

8.84.3.1 PeekNext()

object PeekNext ()

Read next piece of data from the stream without advancing the "current" item.

Generated by Doxygen

8.84 PhotonStream Class Reference 317

8.84.3.2 ReceiveNext()

object ReceiveNext ()

Read next piece of data from the stream when IsReading is true.

8.84.3.3 SendNext()

void SendNext (

object obj)

Add another piece of data to send it when IsWriting is true.

8.84.3.4 Serialize() [1/10]

void Serialize (

ref bool myBool)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.5 Serialize() [2/10]

void Serialize (

ref char value)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.6 Serialize() [3/10]

void Serialize (

ref float obj)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.7 Serialize() [4/10]

void Serialize (

ref int myInt)

Will read or write the value, depending on the stream's IsWriting value.

Generated by Doxygen

318 Class Documentation

8.84.3.8 Serialize() [5/10]

void Serialize (

ref Player obj)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.9 Serialize() [6/10]

void Serialize (

ref Quaternion obj)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.10 Serialize() [7/10]

void Serialize (

ref short value)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.11 Serialize() [8/10]

void Serialize (

ref string value)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.12 Serialize() [9/10]

void Serialize (

ref Vector2 obj)

Will read or write the value, depending on the stream's IsWriting value.

8.84.3.13 Serialize() [10/10]

void Serialize (

ref Vector3 obj)

Will read or write the value, depending on the stream's IsWriting value.

Generated by Doxygen

8.85 PhotonStreamQueue Class Reference 319

8.84.3.14 ToArray()

object [] ToArray ()

Turns the stream into a new object[].

8.84.4 Property Documentation

8.84.4.1 Count

int? Count [get]

Count of items in the stream.

8.84.4.2 IsReading

bool IsReading [get]

If true, this client should read data send by another client.

8.84.4.3 IsWriting

bool IsWriting [get]

If true, this client should add data to the stream to send it.

8.85 PhotonStreamQueue Class Reference

The PhotonStreamQueue helps you poll object states at higher frequencies than what PhotonNetwork.SendRate
dictates and then sends all those states at once when Serialize() is called. On the receiving end you can call
Deserialize() and then the stream will roll out the received object states in the same order and timeStep they were
recorded in.

Generated by Doxygen

320 Class Documentation

Public Member Functions

• PhotonStreamQueue (int sampleRate)

Initializes a new instance of the PhotonStreamQueue class.

• void Reset ()

Resets the PhotonStreamQueue. You need to do this whenever the amount of objects you are observing changes

• void SendNext (object obj)

Adds the next object to the queue. This works just like PhotonStream.SendNext

• bool HasQueuedObjects ()

Determines whether the queue has stored any objects

• object ReceiveNext ()

Receives the next object from the queue. This works just like PhotonStream.ReceiveNext

• void Serialize (PhotonStream stream)

Serializes the specified stream. Call this in your OnPhotonSerializeView method to send the whole recorded stream.

• void Deserialize (PhotonStream stream)

Deserializes the specified stream. Call this in your OnPhotonSerializeView method to receive the whole recorded
stream.

8.85.1 Detailed Description

The PhotonStreamQueue helps you poll object states at higher frequencies than what PhotonNetwork.SendRate
dictates and then sends all those states at once when Serialize() is called. On the receiving end you can call
Deserialize() and then the stream will roll out the received object states in the same order and timeStep they were
recorded in.

8.85.2 Constructor & Destructor Documentation

8.85.2.1 PhotonStreamQueue()

PhotonStreamQueue (

int sampleRate)

Initializes a new instance of the PhotonStreamQueue class.

Parameters

sampleRate How many times per second should the object states be sampled

8.85.3 Member Function Documentation

Generated by Doxygen

8.85 PhotonStreamQueue Class Reference 321

8.85.3.1 Deserialize()

void Deserialize (

PhotonStream stream)

Deserializes the specified stream. Call this in your OnPhotonSerializeView method to receive the whole recorded
stream.

Parameters

stream The PhotonStream you receive as a parameter in OnPhotonSerializeView

8.85.3.2 HasQueuedObjects()

bool HasQueuedObjects ()

Determines whether the queue has stored any objects

8.85.3.3 ReceiveNext()

object ReceiveNext ()

Receives the next object from the queue. This works just like PhotonStream.ReceiveNext

Returns

8.85.3.4 Reset()

void Reset ()

Resets the PhotonStreamQueue. You need to do this whenever the amount of objects you are observing changes

8.85.3.5 SendNext()

void SendNext (

object obj)

Adds the next object to the queue. This works just like PhotonStream.SendNext

Generated by Doxygen

322 Class Documentation

Parameters

obj The object you want to add to the queue

8.85.3.6 Serialize()

void Serialize (

PhotonStream stream)

Serializes the specified stream. Call this in your OnPhotonSerializeView method to send the whole recorded stream.

Parameters

stream The PhotonStream you receive as a parameter in OnPhotonSerializeView

8.86 PhotonTeam Class Reference

Public Member Functions

• override string ToString ()

Public Attributes

• string Name
• byte Code

8.87 PhotonTeamExtensions Class Reference

Extension methods for the Player class that make use of PhotonTeamsManager.

Static Public Member Functions

• static PhotonTeam GetPhotonTeam (this Player player)

Gets the team the player is currently joined to. Null if none.

• static bool JoinTeam (this Player player, PhotonTeam team)

Join a team.

• static bool JoinTeam (this Player player, byte teamCode)

Join a team using team code.

• static bool JoinTeam (this Player player, string teamName)

Join a team using team name.

• static bool SwitchTeam (this Player player, PhotonTeam team)

Switch that player's team to the one you assign.

Generated by Doxygen

8.87 PhotonTeamExtensions Class Reference 323

• static bool SwitchTeam (this Player player, byte teamCode)

Switch the player's team using a team code.

• static bool SwitchTeam (this Player player, string teamName)

Switch the player's team using a team name.

• static bool LeaveCurrentTeam (this Player player)

Leave the current team if any.

• static bool TryGetTeamMates (this Player player, out Player[] teamMates)

Try to get the team mates.

8.87.1 Detailed Description

Extension methods for the Player class that make use of PhotonTeamsManager.

8.87.2 Member Function Documentation

8.87.2.1 GetPhotonTeam()

static PhotonTeam GetPhotonTeam (

this Player player) [static]

Gets the team the player is currently joined to. Null if none.

Returns

The team the player is currently joined to. Null if none.

8.87.2.2 JoinTeam() [1/3]

static bool JoinTeam (

this Player player,

byte teamCode) [static]

Join a team using team code.

Parameters

player The player who will join the team.

teamCode The code fo the team to be joined.

Returns

Generated by Doxygen

324 Class Documentation

8.87.2.3 JoinTeam() [2/3]

static bool JoinTeam (

this Player player,

PhotonTeam team) [static]

Join a team.

Parameters

player The player who will join a team.

team The team to be joined.

Returns

8.87.2.4 JoinTeam() [3/3]

static bool JoinTeam (

this Player player,

string teamName) [static]

Join a team using team name.

Parameters

player The player who will join the team.

teamName The name of the team to be joined.

Returns

8.87.2.5 LeaveCurrentTeam()

static bool LeaveCurrentTeam (

this Player player) [static]

Leave the current team if any.

Generated by Doxygen

8.87 PhotonTeamExtensions Class Reference 325

Parameters

player

Returns

If the leaving team request is queued to be sent to the server or done in case offline or not joined to a room
yet.

8.87.2.6 SwitchTeam() [1/3]

static bool SwitchTeam (

this Player player,

byte teamCode) [static]

Switch the player's team using a team code.

Internally checks if this player is in that team already or not.

Parameters

player The player that will switch teams.

teamCode The code of the team to switch to.

Returns

If the team switch request is queued to be sent to the server or done in case offline or not joined to a room yet.

8.87.2.7 SwitchTeam() [2/3]

static bool SwitchTeam (

this Player player,

PhotonTeam team) [static]

Switch that player's team to the one you assign.

Internally checks if this player is in that team already or not. Only team switches are actually sent.

Parameters

player

team

Generated by Doxygen

326 Class Documentation

8.87.2.8 SwitchTeam() [3/3]

static bool SwitchTeam (

this Player player,

string teamName) [static]

Switch the player's team using a team name.

Internally checks if this player is in that team already or not.

Parameters

player The player that will switch teams.

teamName The name of the team to switch to.

Returns

If the team switch request is queued to be sent to the server or done in case offline or not joined to a room yet.

8.87.2.9 TryGetTeamMates()

static bool TryGetTeamMates (

this Player player,

out Player[] teamMates) [static]

Try to get the team mates.

Parameters

player The player to get the team mates of.

teamMates The team mates array to fill.

Returns

If successful or not.

8.88 PhotonTeamsManager Class Reference

Implements teams in a room/game with help of player properties. Access them by Player.GetTeam extension.

Inherits MonoBehaviour, IMatchmakingCallbacks, and IInRoomCallbacks.

Public Member Functions

• bool TryGetTeamByCode (byte code, out PhotonTeam team)

Generated by Doxygen

8.88 PhotonTeamsManager Class Reference 327

Find a PhotonTeam using a team code.

• bool TryGetTeamByName (string teamName, out PhotonTeam team)

Find a PhotonTeam using a team name.

• PhotonTeam[] GetAvailableTeams ()

Gets all teams available.

• bool TryGetTeamMembers (byte code, out Player[] members)

Gets all players joined to a team using a team code.

• bool TryGetTeamMembers (string teamName, out Player[] members)

Gets all players joined to a team using a team name.

• bool TryGetTeamMembers (PhotonTeam team, out Player[] members)

Gets all players joined to a team.

• bool TryGetTeamMatesOfPlayer (Player player, out Player[] teamMates)

Gets all team mates of a player.

• int GetTeamMembersCount (byte code)

Gets the number of players in a team by team code.

• int GetTeamMembersCount (string name)

Gets the number of players in a team by team name.

• int GetTeamMembersCount (PhotonTeam team)

Gets the number of players in a team.

Static Public Attributes

• const string TeamPlayerProp = "_pt"

Defines the player custom property name to use for team affinity of "this" player.

Properties

• static PhotonTeamsManager Instance [get]

Events

• static Action< Player, PhotonTeam > PlayerJoinedTeam
• static Action< Player, PhotonTeam > PlayerLeftTeam

8.88.1 Detailed Description

Implements teams in a room/game with help of player properties. Access them by Player.GetTeam extension.

Teams are defined by enum Team. Change this to get more / different teams. There are no rules when / if you can
join a team. You could add this in JoinTeam or something.

8.88.2 Member Function Documentation

Generated by Doxygen

328 Class Documentation

8.88.2.1 GetAvailableTeams()

PhotonTeam [] GetAvailableTeams ()

Gets all teams available.

Returns

Returns all teams available.

8.88.2.2 GetTeamMembersCount() [1/3]

int GetTeamMembersCount (

byte code)

Gets the number of players in a team by team code.

Parameters

code Unique code of the team

Returns

Number of players joined to the team.

8.88.2.3 GetTeamMembersCount() [2/3]

int GetTeamMembersCount (

PhotonTeam team)

Gets the number of players in a team.

Parameters

team The team you want to know the size of

Returns

Number of players joined to the team.

Generated by Doxygen

8.88 PhotonTeamsManager Class Reference 329

8.88.2.4 GetTeamMembersCount() [3/3]

int GetTeamMembersCount (

string name)

Gets the number of players in a team by team name.

Parameters

name Unique name of the team

Returns

Number of players joined to the team.

8.88.2.5 TryGetTeamByCode()

bool TryGetTeamByCode (

byte code,

out PhotonTeam team)

Find a PhotonTeam using a team code.

Parameters

code The team code.
team The team to be assigned if found.

Returns

If successful or not.

8.88.2.6 TryGetTeamByName()

bool TryGetTeamByName (

string teamName,

out PhotonTeam team)

Find a PhotonTeam using a team name.

Parameters

teamName The team name.
team The team to be assigned if found.

Generated by Doxygen

330 Class Documentation

Returns

If successful or not.

8.88.2.7 TryGetTeamMatesOfPlayer()

bool TryGetTeamMatesOfPlayer (

Player player,

out Player[] teamMates)

Gets all team mates of a player.

Parameters

player The player whose team mates will be searched.

teamMates The array of players to be filled.

Returns

If successful or not.

8.88.2.8 TryGetTeamMembers() [1/3]

bool TryGetTeamMembers (

byte code,

out Player[] members)

Gets all players joined to a team using a team code.

Parameters

code The code of the team.
members The array of players to be filled.

Returns

If successful or not.

8.88.2.9 TryGetTeamMembers() [2/3]

bool TryGetTeamMembers (

PhotonTeam team,

out Player[] members)

Gets all players joined to a team.

Generated by Doxygen

8.89 PhotonTransformView Class Reference 331

Parameters

team The team which will be used to find players.

members The array of players to be filled.

Returns

If successful or not.

8.88.2.10 TryGetTeamMembers() [3/3]

bool TryGetTeamMembers (

string teamName,

out Player[] members)

Gets all players joined to a team using a team name.

Parameters

teamName The name of the team.
members The array of players to be filled.

Returns

If successful or not.

8.88.3 Member Data Documentation

8.88.3.1 TeamPlayerProp

const string TeamPlayerProp = "_pt" [static]

Defines the player custom property name to use for team affinity of "this" player.

8.89 PhotonTransformView Class Reference

Inherits MonoBehaviourPun, and IPunObservable.

Generated by Doxygen

332 Class Documentation

Public Member Functions

• void Awake ()
• void Update ()
• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

Public Attributes

• bool m_SynchronizePosition = true
• bool m_SynchronizeRotation = true
• bool m_SynchronizeScale = false
• bool m_UseLocal

Additional Inherited Members

8.89.1 Member Function Documentation

8.89.1.1 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

This method will be called in scripts that are assigned as Observed component of a PhotonView.
PhotonNetwork.SerializationRate affects how often this method is called.
PhotonNetwork.SendRate affects how often packages are sent by this client.

Implementing this method, you can customize which data a PhotonView regularly synchronizes. Your code defines
what is being sent (content) and how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it is assigned to a PhotonView as Photon←↩

View.observed script.

To make use of this method, the PhotonStream is essential. It will be in "writing" mode" on the client that controls a
PhotonView (PhotonStream.IsWriting == true) and in "reading mode" on the remote clients that just receive that the
controlling client sends.

If you skip writing any value into the stream, PUN will skip the update. Used carefully, this can conserve bandwidth
and messages (which have a limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when the sender does not send any update. This
can't be used as "x-times per second Update()".

Implements IPunObservable.

Generated by Doxygen

8.90 PhotonTransformViewClassic Class Reference 333

8.90 PhotonTransformViewClassic Class Reference

This class helps you to synchronize position, rotation and scale of a GameObject. It also gives you many different
options to make the synchronized values appear smooth, even when the data is only send a couple of times per
second. Simply add the component to your GameObject and make sure that the PhotonTransformViewClassic is
added to the list of observed components

Inherits MonoBehaviourPun, and IPunObservable.

Public Member Functions

• void SetSynchronizedValues (Vector3 speed, float turnSpeed)

These values are synchronized to the remote objects if the interpolation mode or the extrapolation mode
SynchronizeValues is used. Your movement script should pass on the current speed (in units/second) and turning
speed (in angles/second) so the remote object can use them to predict the objects movement.

• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

Public Attributes

• PhotonTransformViewPositionModel m_PositionModel = new PhotonTransformViewPositionModel()

• PhotonTransformViewRotationModel m_RotationModel = new PhotonTransformViewRotationModel()

• PhotonTransformViewScaleModel m_ScaleModel = new PhotonTransformViewScaleModel()

Additional Inherited Members

8.90.1 Detailed Description

This class helps you to synchronize position, rotation and scale of a GameObject. It also gives you many different
options to make the synchronized values appear smooth, even when the data is only send a couple of times per
second. Simply add the component to your GameObject and make sure that the PhotonTransformViewClassic is
added to the list of observed components

8.90.2 Member Function Documentation

Generated by Doxygen

334 Class Documentation

8.90.2.1 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

This method will be called in scripts that are assigned as Observed component of a PhotonView.
PhotonNetwork.SerializationRate affects how often this method is called.
PhotonNetwork.SendRate affects how often packages are sent by this client.

Implementing this method, you can customize which data a PhotonView regularly synchronizes. Your code defines
what is being sent (content) and how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it is assigned to a PhotonView as Photon←↩

View.observed script.

To make use of this method, the PhotonStream is essential. It will be in "writing" mode" on the client that controls a
PhotonView (PhotonStream.IsWriting == true) and in "reading mode" on the remote clients that just receive that the
controlling client sends.

If you skip writing any value into the stream, PUN will skip the update. Used carefully, this can conserve bandwidth
and messages (which have a limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when the sender does not send any update. This
can't be used as "x-times per second Update()".

Implements IPunObservable.

8.90.2.2 SetSynchronizedValues()

void SetSynchronizedValues (

Vector3 speed,

float turnSpeed)

These values are synchronized to the remote objects if the interpolation mode or the extrapolation mode
SynchronizeValues is used. Your movement script should pass on the current speed (in units/second) and turn-
ing speed (in angles/second) so the remote object can use them to predict the objects movement.

Parameters

speed The current movement vector of the object in units/second.

turnSpeed The current turn speed of the object in angles/second.

Generated by Doxygen

8.91 PhotonTransformViewPositionControl Class Reference 335

8.91 PhotonTransformViewPositionControl Class Reference

Public Member Functions

• PhotonTransformViewPositionControl (PhotonTransformViewPositionModel model)
• void SetSynchronizedValues (Vector3 speed, float turnSpeed)

These values are synchronized to the remote objects if the interpolation mode or the extrapolation mode
SynchronizeValues is used. Your movement script should pass on the current speed (in units/second) and turning
speed (in angles/second) so the remote object can use them to predict the objects movement.

• Vector3 UpdatePosition (Vector3 currentPosition)

Calculates the new position based on the values setup in the inspector
• Vector3 GetNetworkPosition ()

Gets the last position that was received through the network
• Vector3 GetExtrapolatedPositionOffset ()

Calculates an estimated position based on the last synchronized position, the time when the last position was received
and the movement speed of the object

• void OnPhotonSerializeView (Vector3 currentPosition, PhotonStream stream, PhotonMessageInfo info)

8.91.1 Member Function Documentation

8.91.1.1 GetExtrapolatedPositionOffset()

Vector3 GetExtrapolatedPositionOffset ()

Calculates an estimated position based on the last synchronized position, the time when the last position was
received and the movement speed of the object

Returns

Estimated position of the remote object

8.91.1.2 GetNetworkPosition()

Vector3 GetNetworkPosition ()

Gets the last position that was received through the network

Returns

8.91.1.3 SetSynchronizedValues()

void SetSynchronizedValues (

Vector3 speed,

float turnSpeed)

These values are synchronized to the remote objects if the interpolation mode or the extrapolation mode
SynchronizeValues is used. Your movement script should pass on the current speed (in units/second) and turn-
ing speed (in angles/second) so the remote object can use them to predict the objects movement.

Generated by Doxygen

336 Class Documentation

Parameters

speed The current movement vector of the object in units/second.

turnSpeed The current turn speed of the object in angles/second.

8.91.1.4 UpdatePosition()

Vector3 UpdatePosition (

Vector3 currentPosition)

Calculates the new position based on the values setup in the inspector

Parameters

currentPosition The current position.

Returns

The new position.

8.92 PhotonTransformViewPositionModel Class Reference

Public Types

• enum InterpolateOptions
• enum ExtrapolateOptions

Public Attributes

• bool SynchronizeEnabled
• bool TeleportEnabled = true
• float TeleportIfDistanceGreaterThan = 3f
• InterpolateOptions InterpolateOption = InterpolateOptions.EstimatedSpeed
• float InterpolateMoveTowardsSpeed = 1f
• float InterpolateLerpSpeed = 1f
• ExtrapolateOptions ExtrapolateOption = ExtrapolateOptions.Disabled
• float ExtrapolateSpeed = 1f
• bool ExtrapolateIncludingRoundTripTime = true
• int ExtrapolateNumberOfStoredPositions = 1

8.93 PhotonTransformViewRotationControl Class Reference

Public Member Functions

• PhotonTransformViewRotationControl (PhotonTransformViewRotationModel model)
• Quaternion GetNetworkRotation ()

Gets the last rotation that was received through the network
• Quaternion GetRotation (Quaternion currentRotation)
• void OnPhotonSerializeView (Quaternion currentRotation, PhotonStream stream, PhotonMessageInfo info)

Generated by Doxygen

8.94 PhotonTransformViewRotationModel Class Reference 337

8.93.1 Member Function Documentation

8.93.1.1 GetNetworkRotation()

Quaternion GetNetworkRotation ()

Gets the last rotation that was received through the network

Returns

8.94 PhotonTransformViewRotationModel Class Reference

Public Types

• enum InterpolateOptions

Public Attributes

• bool SynchronizeEnabled
• InterpolateOptions InterpolateOption = InterpolateOptions.RotateTowards
• float InterpolateRotateTowardsSpeed = 180
• float InterpolateLerpSpeed = 5

8.95 PhotonTransformViewScaleControl Class Reference

Public Member Functions

• PhotonTransformViewScaleControl (PhotonTransformViewScaleModel model)
• Vector3 GetNetworkScale ()

Gets the last scale that was received through the network

• Vector3 GetScale (Vector3 currentScale)
• void OnPhotonSerializeView (Vector3 currentScale, PhotonStream stream, PhotonMessageInfo info)

8.95.1 Member Function Documentation

Generated by Doxygen

338 Class Documentation

8.95.1.1 GetNetworkScale()

Vector3 GetNetworkScale ()

Gets the last scale that was received through the network

Returns

8.96 PhotonTransformViewScaleModel Class Reference

Public Types

• enum InterpolateOptions

Public Attributes

• bool SynchronizeEnabled

• InterpolateOptions InterpolateOption = InterpolateOptions.Disabled

• float InterpolateMoveTowardsSpeed = 1f

• float InterpolateLerpSpeed

8.97 PhotonView Class Reference

A PhotonView identifies an object across the network (viewID) and configures how the controlling client updates
remote instances.

Inherits MonoBehaviour.

Public Types

• enum ObservableSearch

Generated by Doxygen

8.97 PhotonView Class Reference 339

Public Member Functions

• void OnPreNetDestroy (PhotonView rootView)

• void RequestOwnership ()

Depending on the PhotonView's OwnershipTransfer setting, any client can request to become owner of the
PhotonView.

• void TransferOwnership (Player newOwner)

Transfers the ownership of this PhotonView (and GameObject) to another player.

• void TransferOwnership (int newOwnerId)

Transfers the ownership of this PhotonView (and GameObject) to another player.

• void FindObservables (bool force=false)

Will find IPunObservable components on this GameObject and nested children and add them to the Observed←↩

Components list.

• void SerializeView (PhotonStream stream, PhotonMessageInfo info)

• void DeserializeView (PhotonStream stream, PhotonMessageInfo info)

• void RefreshRpcMonoBehaviourCache ()

Can be used to refesh the list of MonoBehaviours on this GameObject while PhotonNetwork.UseRpcMonoBehaviourCache
is true.

• void RPC (string methodName, RpcTarget target, params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

• void RpcSecure (string methodName, RpcTarget target, bool encrypt, params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

• void RPC (string methodName, Player targetPlayer, params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

• void RpcSecure (string methodName, Player targetPlayer, bool encrypt, params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

• void AddCallbackTarget (IPhotonViewCallback obj)

Add object to all applicable callback interfaces. Object must implement at least one IOnPhotonViewCallback derived
interface.

• void RemoveCallbackTarget (IPhotonViewCallback obj)

Remove object from all applicable callback interfaces. Object must implement at least one IOnPhotonViewCallback
derived interface.

• void AddCallback< T > (IPhotonViewCallback obj)

Add object to this PhotonView's callback. T is the IOnPhotonViewCallback derived interface you want added to its
associated callback list. Supplying IOnPhotonViewCallback (the interface base class) as T will add ALL implemented
IOnPhotonViewCallback Interfaces found on the object.

• void RemoveCallback< T > (IPhotonViewCallback obj)

Remove object from this PhotonView's callback list for T. T is the IOnPhotonViewCallback derived interface you want
removed from its associated callback list. Supplying IOnPhotonViewCallback (the interface base class) as T will
remove ALL implemented IOnPhotonViewCallback Interfaces found on the object.

• override string ToString ()

Static Public Member Functions

• static PhotonView Get (Component component)

• static PhotonView Get (GameObject gameObj)

• static PhotonView Find (int viewID)

Finds the PhotonView Component with a viewID in the scene

Generated by Doxygen

340 Class Documentation

Public Attributes

• byte Group = 0
• int prefixField = -1
• ViewSynchronization Synchronization = ViewSynchronization.UnreliableOnChange
• OwnershipOption OwnershipTransfer = OwnershipOption.Fixed

Defines if ownership of this PhotonView is fixed, can be requested or simply taken.

• ObservableSearch observableSearch = ObservableSearch.Manual

Default to manual so existing PVs in projects default to same as before. Reset() changes this to AutoAll for new
implementations.

• List< Component > ObservedComponents
• int sceneViewId = 0

This field is the Scene ViewID (0 if not used). loaded with the scene, used in Awake().

• int InstantiationId
• bool isRuntimeInstantiated

Properties

• int Prefix [get, set]

• object[] InstantiationData [get, set]

This is the InstantiationData that was passed when calling PhotonNetwork.Instantiate∗ (if that was used to spawn this
prefab)

• bool IsSceneView [get]

• bool IsRoomView [get]

True if the PhotonView was loaded with the scene (game object) or instantiated with InstantiateRoomObject.

• bool IsOwnerActive [get]

• bool IsMine [get]

True if the PhotonView is "mine" and can be controlled by this client.

• bool AmController [get]

• Player Controller [get]

• int CreatorActorNr [get]

• bool AmOwner [get]

• Player Owner [get]

The owner of a PhotonView is the creator of an object by default Ownership can be transferred and the owner may
not be in the room anymore. Objects in the scene don't have an owner.

• int?? OwnerActorNr [get, set]

• int?? ControllerActorNr [get, set]

• int ViewID [get, set]

The ID of the PhotonView. Identifies it in a networked game (per room).

8.97.1 Detailed Description

A PhotonView identifies an object across the network (viewID) and configures how the controlling client updates
remote instances.

8.97.2 Member Function Documentation

Generated by Doxygen

8.97 PhotonView Class Reference 341

8.97.2.1 AddCallback< T >()

void AddCallback< T > (

IPhotonViewCallback obj)

Add object to this PhotonView's callback. T is the IOnPhotonViewCallback derived interface you want added to
its associated callback list. Supplying IOnPhotonViewCallback (the interface base class) as T will add ALL imple-
mented IOnPhotonViewCallback Interfaces found on the object.

Type Constraints

T : class

T : IPhotonViewCallback

8.97.2.2 AddCallbackTarget()

void AddCallbackTarget (

IPhotonViewCallback obj)

Add object to all applicable callback interfaces. Object must implement at least one IOnPhotonViewCallback derived
interface.

Parameters

obj An object that implements OnPhotonView callback interface(s).

8.97.2.3 Find()

static PhotonView Find (

int viewID) [static]

Finds the PhotonView Component with a viewID in the scene

Parameters

viewID

Returns

The PhotonView with ViewID. Returns null if none found

Generated by Doxygen

342 Class Documentation

8.97.2.4 FindObservables()

void FindObservables (

bool force = false)

Will find IPunObservable components on this GameObject and nested children and add them to the Observed←↩

Components list.

This is called via PhotonView.Awake(), which in turn is called immediately by the engine's AddComponent method.

Changing the ObservedComponents of a PhotonView at runtime can be problematic, if other clients are not also
updating their list.

Parameters

force If true, FindObservables will work as if observableSearch is AutoFindActive.

8.97.2.5 RefreshRpcMonoBehaviourCache()

void RefreshRpcMonoBehaviourCache ()

Can be used to refesh the list of MonoBehaviours on this GameObject while PhotonNetwork.UseRpcMonoBehaviourCache
is true.

Set PhotonNetwork.UseRpcMonoBehaviourCache to true to enable the caching. Uses this.GetComponents<←↩

MonoBehaviour>() to get a list of MonoBehaviours to call RPCs on (potentially).

While PhotonNetwork.UseRpcMonoBehaviourCache is false, this method has no effect, because the list is refreshed
when a RPC gets called.

8.97.2.6 RemoveCallback< T >()

void RemoveCallback< T > (

IPhotonViewCallback obj)

Remove object from this PhotonView's callback list for T. T is the IOnPhotonViewCallback derived interface you
want removed from its associated callback list. Supplying IOnPhotonViewCallback (the interface base class) as T
will remove ALL implemented IOnPhotonViewCallback Interfaces found on the object.

Type Constraints

T : class

T : IPhotonViewCallback

8.97.2.7 RemoveCallbackTarget()

void RemoveCallbackTarget (

IPhotonViewCallback obj)

Remove object from all applicable callback interfaces. Object must implement at least one IOnPhotonViewCallback
derived interface.

Generated by Doxygen

8.97 PhotonView Class Reference 343

Parameters

obj An object that implements OnPhotonView callback interface(s).

8.97.2.8 RequestOwnership()

void RequestOwnership ()

Depending on the PhotonView's OwnershipTransfer setting, any client can request to become owner of the
PhotonView.

Requesting ownership can give you control over a PhotonView, if the OwnershipTransfer setting allows that. The
current owner might have to implement IPunCallbacks.OnOwnershipRequest to react to the ownership request.

The owner/controller of a PhotonView is also the client which sends position updates of the GameObject.

8.97.2.9 RPC() [1/2]

void RPC (

string methodName,

Player targetPlayer,

params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

Remote Procedure Calls are an essential tool in making multiplayer games with PUN. It enables you to make every
client in a room call a specific method.

This method allows you to make an RPC calls on a specific player's client. Of course, calls are affected by this
client's lag and that of remote clients.

Each call automatically is routed to the same PhotonView (and GameObject) that was used on the originating client.

See: Remote Procedure Calls.

Parameters

methodName The name of a fitting method that was has the RPC attribute.

targetPlayer The group of targets and the way the RPC gets sent.

parameters The parameters that the RPC method has (must fit this call!).

8.97.2.10 RPC() [2/2]

void RPC (

string methodName,

Generated by Doxygen

344 Class Documentation

RpcTarget target,

params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

Remote Procedure Calls are an essential tool in making multiplayer games with PUN. It enables you to make every
client in a room call a specific method.

RPC calls can target "All" or the "Others". Usually, the target "All" gets executed locally immediately after sending
the RPC. The "∗ViaServer" options send the RPC to the server and execute it on this client when it's sent back. Of
course, calls are affected by this client's lag and that of remote clients.

Each call automatically is routed to the same PhotonView (and GameObject) that was used on the originating client.

See: Remote Procedure Calls.

Parameters

methodName The name of a fitting method that was has the RPC attribute.

target The group of targets and the way the RPC gets sent.

parameters The parameters that the RPC method has (must fit this call!).

8.97.2.11 RpcSecure() [1/2]

void RpcSecure (

string methodName,

Player targetPlayer,

bool encrypt,

params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

Remote Procedure Calls are an essential tool in making multiplayer games with PUN. It enables you to make every
client in a room call a specific method.

This method allows you to make an RPC calls on a specific player's client. Of course, calls are affected by this
client's lag and that of remote clients.

Each call automatically is routed to the same PhotonView (and GameObject) that was used on the originating client.

See: Remote Procedure Calls.

param name="methodName">The name of a fitting method that was has the RPC attribute.

param name="targetPlayer">The group of targets and the way the RPC gets sent.

param name="encrypt">

param name="parameters">The parameters that the RPC method has (must fit this call!).

Generated by Doxygen

8.97 PhotonView Class Reference 345

8.97.2.12 RpcSecure() [2/2]

void RpcSecure (

string methodName,

RpcTarget target,

bool encrypt,

params object[] parameters)

Call a RPC method of this GameObject on remote clients of this room (or on all, including this client).

Remote Procedure Calls are an essential tool in making multiplayer games with PUN. It enables you to make every
client in a room call a specific method.

RPC calls can target "All" or the "Others". Usually, the target "All" gets executed locally immediately after sending
the RPC. The "∗ViaServer" options send the RPC to the server and execute it on this client when it's sent back. Of
course, calls are affected by this client's lag and that of remote clients.

Each call automatically is routed to the same PhotonView (and GameObject) that was used on the originating client.

See: Remote Procedure Calls.

param name="methodName">The name of a fitting method that was has the RPC attribute.

param name="target">The group of targets and the way the RPC gets sent.

param name="encrypt">

param name="parameters">The parameters that the RPC method has (must fit this call!).

8.97.2.13 TransferOwnership() [1/2]

void TransferOwnership (

int newOwnerId)

Transfers the ownership of this PhotonView (and GameObject) to another player.

The owner/controller of a PhotonView is also the client which sends position updates of the GameObject.

8.97.2.14 TransferOwnership() [2/2]

void TransferOwnership (

Player newOwner)

Transfers the ownership of this PhotonView (and GameObject) to another player.

The owner/controller of a PhotonView is also the client which sends position updates of the GameObject.

8.97.3 Member Data Documentation

Generated by Doxygen

346 Class Documentation

8.97.3.1 OwnershipTransfer

OwnershipOption OwnershipTransfer = OwnershipOption.Fixed

Defines if ownership of this PhotonView is fixed, can be requested or simply taken.

Note that you can't edit this value at runtime. The options are described in enum OwnershipOption. The current
owner has to implement IPunCallbacks.OnOwnershipRequest to react to the ownership request.

8.97.4 Property Documentation

8.97.4.1 InstantiationData

object [] InstantiationData [get], [set]

This is the InstantiationData that was passed when calling PhotonNetwork.Instantiate∗ (if that was used to spawn
this prefab)

8.97.4.2 IsMine

bool IsMine [get]

True if the PhotonView is "mine" and can be controlled by this client.

PUN has an ownership concept that defines who can control and destroy each PhotonView. True in case the
controller matches the local Player. True if this is a scene photonview (null owner and ownerId == 0) on the Master
client.

8.97.4.3 IsRoomView

bool IsRoomView [get]

True if the PhotonView was loaded with the scene (game object) or instantiated with InstantiateRoomObject.

Room objects are not owned by a particular player but belong to the scene. Thus they don't get destroyed when
their creator leaves the game and the current Master Client can control them (whoever that is). The ownerId is 0
(player IDs are 1 and up).

8.97.4.4 Owner

Player Owner [get]

The owner of a PhotonView is the creator of an object by default Ownership can be transferred and the owner may
not be in the room anymore. Objects in the scene don't have an owner.

The owner/controller of a PhotonView is also the client which sends position updates of the GameObject.

Ownership can be transferred to another player with PhotonView.TransferOwnership or any player can request
ownership by calling the PhotonView's RequestOwnership method. The current owner has to implement IPun←↩

Callbacks.OnOwnershipRequest to react to the ownership request.

Generated by Doxygen

8.98 PingMono Class Reference 347

8.97.4.5 ViewID

int ViewID [get], [set]

The ID of the PhotonView. Identifies it in a networked game (per room).

See: Network Instantiation

8.98 PingMono Class Reference

Uses C# Socket class from System.Net.Sockets (as Unity usually does).

Inherits PhotonPing.

Public Member Functions

• override bool StartPing (string ip)

Sends a "Photon Ping" to a server.

• override bool Done ()
• override void Dispose ()

Additional Inherited Members

8.98.1 Detailed Description

Uses C# Socket class from System.Net.Sockets (as Unity usually does).

Incompatible with Windows 8 Store/Phone API.

8.98.2 Member Function Documentation

8.98.2.1 StartPing()

override bool StartPing (

string ip) [virtual]

Sends a "Photon Ping" to a server.

Parameters

ip Address in IPv4 or IPv6 format. An address containing a '.' will be interpreted as IPv4.

Generated by Doxygen

348 Class Documentation

Returns

True if the Photon Ping could be sent.

Reimplemented from PhotonPing.

8.99 Player Class Reference

Summarizes a "player" within a room, identified (in that room) by ID (or "actorNumber").

Public Member Functions
• Player Get (int id)

Get a Player by ActorNumber (Player.ID).
• Player GetNext ()

Gets this Player's next Player, as sorted by ActorNumber (Player.ID). Wraps around.
• Player GetNextFor (Player currentPlayer)

Gets a Player's next Player, as sorted by ActorNumber (Player.ID). Wraps around.
• Player GetNextFor (int currentPlayerId)

Gets a Player's next Player, as sorted by ActorNumber (Player.ID). Wraps around.
• override string ToString ()

Brief summary string of the Player: ActorNumber and NickName
• string ToStringFull ()

String summary of the Player: player.ID, name and all custom properties of this user.
• override bool Equals (object p)

If players are equal (by GetHasCode, which returns this.ID).
• override int GetHashCode ()

Accompanies Equals, using the ID (actorNumber) as HashCode to return.
• bool SetCustomProperties (Hashtable propertiesToSet, Hashtable expectedValues=null, WebFlags web←↩

Flags=null)

Updates and synchronizes this Player's Custom Properties. Optionally, expectedProperties can be provided as con-
dition.

Public Attributes
• readonly bool IsLocal

Only one player is controlled by each client. Others are not local.
• object TagObject

Can be used to store a reference that's useful to know "by player".

Properties
• int ActorNumber [get]

Identifier of this player in current room. Also known as: actorNumber or actorNumber. It's -1 outside of rooms.
• bool HasRejoined [get, set]
• string NickName [get, set]

Non-unique nickname of this player. Synced automatically in a room.
• string UserId [get, set]

UserId of the player, available when the room got created with RoomOptions.PublishUserId = true.
• bool IsMasterClient [get]

True if this player is the Master Client of the current room.
• bool IsInactive [get, set]

If this player is active in the room (and getting events which are currently being sent).
• Hashtable CustomProperties [get, set]

Read-only cache for custom properties of player. Set via Player.SetCustomProperties.

Generated by Doxygen

8.99 Player Class Reference 349

8.99.1 Detailed Description

Summarizes a "player" within a room, identified (in that room) by ID (or "actorNumber").

Each player has a actorNumber, valid for that room. It's -1 until assigned by server (and client logic).

8.99.2 Member Function Documentation

8.99.2.1 Equals()

override bool Equals (

object p)

If players are equal (by GetHasCode, which returns this.ID).

8.99.2.2 Get()

Player Get (

int id)

Get a Player by ActorNumber (Player.ID).

Parameters

id ActorNumber of the a player in this room.

Returns

Player or null.

8.99.2.3 GetHashCode()

override int GetHashCode ()

Accompanies Equals, using the ID (actorNumber) as HashCode to return.

Generated by Doxygen

350 Class Documentation

8.99.2.4 GetNext()

Player GetNext ()

Gets this Player's next Player, as sorted by ActorNumber (Player.ID). Wraps around.

Returns

Player or null.

8.99.2.5 GetNextFor() [1/2]

Player GetNextFor (

int currentPlayerId)

Gets a Player's next Player, as sorted by ActorNumber (Player.ID). Wraps around.

Useful when you pass something to the next player. For example: passing the turn to the next player.

Parameters

current←↩

PlayerId
The ActorNumber (Player.ID) for which the next is being needed.

Returns

Player or null.

8.99.2.6 GetNextFor() [2/2]

Player GetNextFor (

Player currentPlayer)

Gets a Player's next Player, as sorted by ActorNumber (Player.ID). Wraps around.

Useful when you pass something to the next player. For example: passing the turn to the next player.

Parameters

currentPlayer The Player for which the next is being needed.

Returns

Player or null.

Generated by Doxygen

8.99 Player Class Reference 351

8.99.2.7 SetCustomProperties()

bool SetCustomProperties (

Hashtable propertiesToSet,

Hashtable expectedValues = null,

WebFlags webFlags = null)

Updates and synchronizes this Player's Custom Properties. Optionally, expectedProperties can be provided as
condition.

Custom Properties are a set of string keys and arbitrary values which is synchronized for the players in a Room.
They are available when the client enters the room, as they are in the response of OpJoin and OpCreate.

Custom Properties either relate to the (current) Room or a Player (in that Room).

Both classes locally cache the current key/values and make them available as property: CustomProperties. This is
provided only to read them. You must use the method SetCustomProperties to set/modify them.

Any client can set any Custom Properties anytime (when in a room). It's up to the game logic to organize how they
are best used.

You should call SetCustomProperties only with key/values that are new or changed. This reduces traffic and perfor-
mance.

Unless you define some expectedProperties, setting key/values is always permitted. In this case, the property-
setting client will not receive the new values from the server but instead update its local cache in SetCustom←↩

Properties.

If you define expectedProperties, the server will skip updates if the server property-cache does not contain all
expectedProperties with the same values. In this case, the property-setting client will get an update from the server
and update it's cached key/values at about the same time as everyone else.

The benefit of using expectedProperties can be only one client successfully sets a key from one known value to
another. As example: Store who owns an item in a Custom Property "ownedBy". It's 0 initally. When multiple players
reach the item, they all attempt to change "ownedBy" from 0 to their actorNumber. If you use expectedProperties
{"ownedBy", 0} as condition, the first player to take the item will have it (and the others fail to set the ownership).

Properties get saved with the game state for Turnbased games (which use IsPersistent = true).

Parameters

propertiesToSet Hashtable of Custom Properties to be set.

expectedValues If non-null, these are the property-values the server will check as condition for this update.

webFlags Defines if this SetCustomProperties-operation gets forwarded to your WebHooks. Client
must be in room.

Returns

False if propertiesToSet is null or empty or have zero string keys. True in offline mode even if expected←↩

Properties or webFlags are used. If not in a room, returns true if local player and expectedValues and web←↩

Flags are null. (Use this to cache properties to be sent when joining a room). Otherwise, returns if this
operation could be sent to the server.

Generated by Doxygen

352 Class Documentation

8.99.2.8 ToString()

override string ToString ()

Brief summary string of the Player: ActorNumber and NickName

8.99.2.9 ToStringFull()

string ToStringFull ()

String summary of the Player: player.ID, name and all custom properties of this user.

Use with care and not every frame! Converts the customProperties to a String on every single call.

8.99.3 Member Data Documentation

8.99.3.1 IsLocal

readonly bool IsLocal

Only one player is controlled by each client. Others are not local.

8.99.3.2 TagObject

object TagObject

Can be used to store a reference that's useful to know "by player".

Example: Set a player's character as Tag by assigning the GameObject on Instantiate.

8.99.4 Property Documentation

8.99.4.1 ActorNumber

int ActorNumber [get]

Identifier of this player in current room. Also known as: actorNumber or actorNumber. It's -1 outside of rooms.

The ID is assigned per room and only valid in that context. It will change even on leave and re-join. IDs are never
re-used per room.

Generated by Doxygen

8.99 Player Class Reference 353

8.99.4.2 CustomProperties

Hashtable CustomProperties [get], [set]

Read-only cache for custom properties of player. Set via Player.SetCustomProperties.

Don't modify the content of this Hashtable. Use SetCustomProperties and the properties of this class to modify
values. When you use those, the client will sync values with the server.

SetCustomProperties

8.99.4.3 IsInactive

bool IsInactive [get], [set]

If this player is active in the room (and getting events which are currently being sent).

Inactive players keep their spot in a room but otherwise behave as if offline (no matter what their actual connection
status is). The room needs a PlayerTTL != 0. If a player is inactive for longer than PlayerTTL, the server will remove
this player from the room. For a client "rejoining" a room, is the same as joining it: It gets properties, cached events
and then the live events.

8.99.4.4 IsMasterClient

bool IsMasterClient [get]

True if this player is the Master Client of the current room.

8.99.4.5 NickName

string NickName [get], [set]

Non-unique nickname of this player. Synced automatically in a room.

A player might change his own playername in a room (it's only a property). Setting this value updates the server
and other players (using an operation).

8.99.4.6 UserId

string UserId [get], [set]

UserId of the player, available when the room got created with RoomOptions.PublishUserId = true.

Useful for LoadBalancingClient.OpFindFriends and blocking slots in a room for expected players (e.g. in
LoadBalancingClient.OpCreateRoom).

Generated by Doxygen

354 Class Documentation

8.100 PlayerNumbering Class Reference

Implements consistent numbering in a room/game with help of room properties. Access them by Player.GetPlayer←↩

Number() extension.

Inherits MonoBehaviourPunCallbacks.

Public Member Functions

• delegate void PlayerNumberingChanged ()

OnPlayerNumberingChanged delegate. Use

• void Awake ()
• override void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

• override void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

• override void OnPlayerEnteredRoom (Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

• override void OnPlayerLeftRoom (Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

• override void OnPlayerPropertiesUpdate (Player targetPlayer, Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

• void RefreshData ()

Internal call Refresh the cached data and call the OnPlayerNumberingChanged delegate.

Public Attributes

• bool dontDestroyOnLoad = false

dont destroy on load flag for this Component's GameObject to survive Level Loading.

Static Public Attributes

• static PlayerNumbering instance

The instance. EntryPoint to query about Room Indexing.

• static Player[] SortedPlayers
• const string RoomPlayerIndexedProp = "pNr"

Defines the room custom property name to use for room player indexing tracking.

Events

• static PlayerNumberingChanged OnPlayerNumberingChanged

Called everytime the room Indexing was updated. Use this for discrete updates. Always better than brute force calls
every frame.

Generated by Doxygen

8.100 PlayerNumbering Class Reference 355

Additional Inherited Members

8.100.1 Detailed Description

Implements consistent numbering in a room/game with help of room properties. Access them by Player.GetPlayer←↩

Number() extension.

indexing ranges from 0 to the maximum number of Players. indexing remains for the player while in room. If a Player
is numbered 2 and player numbered 1 leaves, numbered 1 become vacant and will assigned to the future player
joining (the first available vacant number is assigned when joining)

8.100.2 Member Function Documentation

8.100.2.1 OnJoinedRoom()

override void OnJoinedRoom () [virtual]

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Reimplemented from MonoBehaviourPunCallbacks.

8.100.2.2 OnLeftRoom()

override void OnLeftRoom () [virtual]

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Reimplemented from MonoBehaviourPunCallbacks.

Generated by Doxygen

356 Class Documentation

8.100.2.3 OnPlayerEnteredRoom()

override void OnPlayerEnteredRoom (

Player newPlayer) [virtual]

Called when a remote player entered the room. This Player is already added to the playerlist.

If your game starts with a certain number of players, this callback can be useful to check the Room.playerCount and
find out if you can start.

Reimplemented from MonoBehaviourPunCallbacks.

8.100.2.4 OnPlayerLeftRoom()

override void OnPlayerLeftRoom (

Player otherPlayer) [virtual]

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

If another player leaves the room or if the server detects a lost connection, this callback will be used to notify your
game logic.

Depending on the room's setup, players may become inactive, which means they may return and retake their spot
in the room. In such cases, the Player stays in the Room.Players dictionary.

If the player is not just inactive, it gets removed from the Room.Players dictionary, before the callback is called.

Reimplemented from MonoBehaviourPunCallbacks.

8.100.2.5 OnPlayerPropertiesUpdate()

override void OnPlayerPropertiesUpdate (

Player targetPlayer,

Hashtable changedProps) [virtual]

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

Changing properties must be done by Player.SetCustomProperties, which causes this callback locally, too.

Parameters

targetPlayer Contains Player that changed.

changedProps Contains the properties that changed.

Reimplemented from MonoBehaviourPunCallbacks.

Generated by Doxygen

8.100 PlayerNumbering Class Reference 357

8.100.2.6 PlayerNumberingChanged()

delegate void PlayerNumberingChanged ()

OnPlayerNumberingChanged delegate. Use

8.100.2.7 RefreshData()

void RefreshData ()

Internal call Refresh the cached data and call the OnPlayerNumberingChanged delegate.

8.100.3 Member Data Documentation

8.100.3.1 dontDestroyOnLoad

bool dontDestroyOnLoad = false

dont destroy on load flag for this Component's GameObject to survive Level Loading.

8.100.3.2 instance

PlayerNumbering instance [static]

The instance. EntryPoint to query about Room Indexing.

8.100.3.3 RoomPlayerIndexedProp

const string RoomPlayerIndexedProp = "pNr" [static]

Defines the room custom property name to use for room player indexing tracking.

8.100.4 Event Documentation

Generated by Doxygen

358 Class Documentation

8.100.4.1 OnPlayerNumberingChanged

PlayerNumberingChanged OnPlayerNumberingChanged [static]

Called everytime the room Indexing was updated. Use this for discrete updates. Always better than brute force calls
every frame.

8.101 PlayerNumberingExtensions Class Reference

Extension used for PlayerRoomIndexing and Player class.

Static Public Member Functions

• static int GetPlayerNumber (this Player player)

Extension for Player class to wrap up access to the player's custom property. Make sure you use the delegate 'On←↩

PlayerNumberingChanged' to knoiw when you can query the PlayerNumber. Numbering can changes over time or
not be yet assigned during the initial phase (when player creates a room for example)

• static void SetPlayerNumber (this Player player, int playerNumber)

Sets the player number. It's not recommanded to manually interfere with the playerNumbering, but possible.

8.101.1 Detailed Description

Extension used for PlayerRoomIndexing and Player class.

8.101.2 Member Function Documentation

8.101.2.1 GetPlayerNumber()

static int GetPlayerNumber (

this Player player) [static]

Extension for Player class to wrap up access to the player's custom property. Make sure you use the delegate
'OnPlayerNumberingChanged' to knoiw when you can query the PlayerNumber. Numbering can changes over time
or not be yet assigned during the initial phase (when player creates a room for example)

Returns

persistent index in room. -1 for no indexing

8.101.2.2 SetPlayerNumber()

static void SetPlayerNumber (

this Player player,

int playerNumber) [static]

Sets the player number. It's not recommanded to manually interfere with the playerNumbering, but possible.

Generated by Doxygen

8.102 PointedAtGameObjectInfo Class Reference 359

Parameters

player Player.

playerNumber Player number.

8.102 PointedAtGameObjectInfo Class Reference

Display ViewId, OwnerActorNr, IsCeneView and IsMine when clicked.

Inherits MonoBehaviour.

Public Member Functions

• void SetFocus (PhotonView pv)
• void RemoveFocus (PhotonView pv)

Public Attributes

• Text text

Static Public Attributes

• static PointedAtGameObjectInfo Instance

8.102.1 Detailed Description

Display ViewId, OwnerActorNr, IsCeneView and IsMine when clicked.

8.103 PunExtensions Class Reference

Small number of extension methods that make it easier for PUN to work cross-Unity-versions.

Static Public Member Functions

• static ParameterInfo[] GetCachedParemeters (this MethodInfo mo)
• static PhotonView[] GetPhotonViewsInChildren (this UnityEngine.GameObject go)
• static PhotonView GetPhotonView (this UnityEngine.GameObject go)
• static bool AlmostEquals (this Vector3 target, Vector3 second, float sqrMagnitudePrecision)

compares the squared magnitude of target - second to given float value
• static bool AlmostEquals (this Vector2 target, Vector2 second, float sqrMagnitudePrecision)

compares the squared magnitude of target - second to given float value
• static bool AlmostEquals (this Quaternion target, Quaternion second, float maxAngle)

compares the angle between target and second to given float value
• static bool AlmostEquals (this float target, float second, float floatDiff)

compares two floats and returns true of their difference is less than floatDiff
• static bool CheckIsAssignableFrom (this Type to, Type from)
• static bool CheckIsInterface (this Type to)

Generated by Doxygen

360 Class Documentation

Static Public Attributes

• static Dictionary< MethodInfo, ParameterInfo[]> ParametersOfMethods = new Dictionary<MethodInfo,
ParameterInfo[]>()

8.103.1 Detailed Description

Small number of extension methods that make it easier for PUN to work cross-Unity-versions.

8.103.2 Member Function Documentation

8.103.2.1 AlmostEquals() [1/4]

static bool AlmostEquals (

this float target,

float second,

float floatDiff) [static]

compares two floats and returns true of their difference is less than floatDiff

8.103.2.2 AlmostEquals() [2/4]

static bool AlmostEquals (

this Quaternion target,

Quaternion second,

float maxAngle) [static]

compares the angle between target and second to given float value

8.103.2.3 AlmostEquals() [3/4]

static bool AlmostEquals (

this Vector2 target,

Vector2 second,

float sqrMagnitudePrecision) [static]

compares the squared magnitude of target - second to given float value

Generated by Doxygen

8.104 PunPlayerScores Class Reference 361

8.103.2.4 AlmostEquals() [4/4]

static bool AlmostEquals (

this Vector3 target,

Vector3 second,

float sqrMagnitudePrecision) [static]

compares the squared magnitude of target - second to given float value

8.104 PunPlayerScores Class Reference

Scoring system for PhotonPlayer

Inherits MonoBehaviour.

Static Public Attributes

• const string PlayerScoreProp = "score"

8.104.1 Detailed Description

Scoring system for PhotonPlayer

8.105 PunRPC Class Reference

Replacement for RPC attribute with different name. Used to flag methods as remote-callable.

Inherits Attribute.

8.105.1 Detailed Description

Replacement for RPC attribute with different name. Used to flag methods as remote-callable.

8.106 PunTeams Class Reference

Implements teams in a room/game with help of player properties. Access them by Player.GetTeam extension.

Inherits MonoBehaviourPunCallbacks.

Public Types

• enum Team : byte

Enum defining the teams available. First team should be neutral (it's the default value any field of this enum gets).

Generated by Doxygen

362 Class Documentation

Public Member Functions

• void Start ()
• override void OnDisable ()
• override void OnJoinedRoom ()

Needed to update the team lists when joining a room.

• override void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

• override void OnPlayerPropertiesUpdate (Player targetPlayer, Hashtable changedProps)

Refreshes the team lists. It could be a non-team related property change, too.

• override void OnPlayerLeftRoom (Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

• override void OnPlayerEnteredRoom (Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

• void UpdateTeams ()

Static Public Attributes

• static Dictionary< Team, List< Player > > PlayersPerTeam

The main list of teams with their player-lists. Automatically kept up to date.

• const string TeamPlayerProp = "team"

Defines the player custom property name to use for team affinity of "this" player.

Additional Inherited Members

8.106.1 Detailed Description

Implements teams in a room/game with help of player properties. Access them by Player.GetTeam extension.

Teams are defined by enum Team. Change this to get more / different teams. There are no rules when / if you can
join a team. You could add this in JoinTeam or something.

8.106.2 Member Enumeration Documentation

8.106.2.1 Team

enum Team : byte [strong]

Enum defining the teams available. First team should be neutral (it's the default value any field of this enum gets).

8.106.3 Member Function Documentation

Generated by Doxygen

8.106 PunTeams Class Reference 363

8.106.3.1 OnJoinedRoom()

override void OnJoinedRoom () [virtual]

Needed to update the team lists when joining a room.

Called by PUN. See enum MonoBehaviourPunCallbacks for an explanation.

Reimplemented from MonoBehaviourPunCallbacks.

8.106.3.2 OnLeftRoom()

override void OnLeftRoom () [virtual]

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Reimplemented from MonoBehaviourPunCallbacks.

8.106.3.3 OnPlayerEnteredRoom()

override void OnPlayerEnteredRoom (

Player newPlayer) [virtual]

Called when a remote player entered the room. This Player is already added to the playerlist.

If your game starts with a certain number of players, this callback can be useful to check the Room.playerCount and
find out if you can start.

Reimplemented from MonoBehaviourPunCallbacks.

8.106.3.4 OnPlayerLeftRoom()

override void OnPlayerLeftRoom (

Player otherPlayer) [virtual]

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

If another player leaves the room or if the server detects a lost connection, this callback will be used to notify your
game logic.

Depending on the room's setup, players may become inactive, which means they may return and retake their spot
in the room. In such cases, the Player stays in the Room.Players dictionary.

If the player is not just inactive, it gets removed from the Room.Players dictionary, before the callback is called.

Reimplemented from MonoBehaviourPunCallbacks.

Generated by Doxygen

364 Class Documentation

8.106.3.5 OnPlayerPropertiesUpdate()

override void OnPlayerPropertiesUpdate (

Player targetPlayer,

Hashtable changedProps) [virtual]

Refreshes the team lists. It could be a non-team related property change, too.

Called by PUN. See enum MonoBehaviourPunCallbacks for an explanation.

Reimplemented from MonoBehaviourPunCallbacks.

8.106.4 Member Data Documentation

8.106.4.1 PlayersPerTeam

Dictionary<Team, List<Player> > PlayersPerTeam [static]

The main list of teams with their player-lists. Automatically kept up to date.

Note that this is static. Can be accessed by PunTeam.PlayersPerTeam. You should not modify this.

8.106.4.2 TeamPlayerProp

const string TeamPlayerProp = "team" [static]

Defines the player custom property name to use for team affinity of "this" player.

8.107 PunTurnManager Class Reference

Pun turnBased Game manager. Provides an Interface (IPunTurnManagerCallbacks) for the typical turn flow and
logic, between players Provides Extensions for Player, Room and RoomInfo to feature dedicated api for TurnBased
Needs

Inherits MonoBehaviourPunCallbacks, and IOnEventCallback.

Public Member Functions

• void BeginTurn ()

Tells the TurnManager to begins a new turn.

• void SendMove (object move, bool finished)

Call to send an action. Optionally finish the turn, too. The move object can be anything. Try to optimize though and
only send the strict minimum set of information to define the turn move.

• bool GetPlayerFinishedTurn (Player player)

Gets if the player finished the current turn.

• void OnEvent (EventData photonEvent)

Called by PhotonNetwork.OnEventCall registration

• override void OnRoomPropertiesUpdate (Hashtable propertiesThatChanged)

Called by PhotonNetwork

Generated by Doxygen

8.107 PunTurnManager Class Reference 365

Public Attributes

• float TurnDuration = 20f

The duration of the turn in seconds.

• IPunTurnManagerCallbacks TurnManagerListener

The turn manager listener. Set this to your own script instance to catch Callbacks

Static Public Attributes

• const byte TurnManagerEventOffset = 0

The turn manager event offset event message byte. Used internaly for defining data in Room Custom Properties

• const byte EvMove = 1 + TurnManagerEventOffset

The Move event message byte. Used internaly for saving data in Room Custom Properties

• const byte EvFinalMove = 2 + TurnManagerEventOffset

The Final Move event message byte. Used internaly for saving data in Room Custom Properties

Properties

• int Turn [get]

Wraps accessing the "turn" custom properties of a room.

• float ElapsedTimeInTurn [get]

Gets the elapsed time in the current turn in seconds

• float RemainingSecondsInTurn [get]

Gets the remaining seconds for the current turn. Ranges from 0 to TurnDuration

• bool IsCompletedByAll [get]

Gets a value indicating whether the turn is completed by all.

• bool IsFinishedByMe [get]

Gets a value indicating whether the current turn is finished by me.

• bool IsOver [get]

Gets a value indicating whether the current turn is over. That is the ElapsedTimeinTurn is greater or equal to the
TurnDuration

8.107.1 Detailed Description

Pun turnBased Game manager. Provides an Interface (IPunTurnManagerCallbacks) for the typical turn flow and
logic, between players Provides Extensions for Player, Room and RoomInfo to feature dedicated api for TurnBased
Needs

8.107.2 Member Function Documentation

8.107.2.1 BeginTurn()

void BeginTurn ()

Tells the TurnManager to begins a new turn.

Generated by Doxygen

366 Class Documentation

8.107.2.2 GetPlayerFinishedTurn()

bool GetPlayerFinishedTurn (

Player player)

Gets if the player finished the current turn.

Returns

true, if player finished the current turn, false otherwise.

Parameters

player The Player to check for

8.107.2.3 OnEvent()

void OnEvent (

EventData photonEvent)

Called by PhotonNetwork.OnEventCall registration

Parameters

photonEvent Photon event.

Implements IOnEventCallback.

8.107.2.4 OnRoomPropertiesUpdate()

override void OnRoomPropertiesUpdate (

Hashtable propertiesThatChanged) [virtual]

Called by PhotonNetwork

Parameters

propertiesThatChanged Properties that changed.

Reimplemented from MonoBehaviourPunCallbacks.

Generated by Doxygen

8.107 PunTurnManager Class Reference 367

8.107.2.5 SendMove()

void SendMove (

object move,

bool finished)

Call to send an action. Optionally finish the turn, too. The move object can be anything. Try to optimize though and
only send the strict minimum set of information to define the turn move.

Parameters

move
finished

8.107.3 Member Data Documentation

8.107.3.1 EvFinalMove

const byte EvFinalMove = 2 + TurnManagerEventOffset [static]

The Final Move event message byte. Used internaly for saving data in Room Custom Properties

8.107.3.2 EvMove

const byte EvMove = 1 + TurnManagerEventOffset [static]

The Move event message byte. Used internaly for saving data in Room Custom Properties

8.107.3.3 TurnDuration

float TurnDuration = 20f

The duration of the turn in seconds.

8.107.3.4 TurnManagerEventOffset

const byte TurnManagerEventOffset = 0 [static]

The turn manager event offset event message byte. Used internaly for defining data in Room Custom Properties

Generated by Doxygen

368 Class Documentation

8.107.3.5 TurnManagerListener

IPunTurnManagerCallbacks TurnManagerListener

The turn manager listener. Set this to your own script instance to catch Callbacks

8.107.4 Property Documentation

8.107.4.1 ElapsedTimeInTurn

float ElapsedTimeInTurn [get]

Gets the elapsed time in the current turn in seconds

The elapsed time in the turn.

8.107.4.2 IsCompletedByAll

bool IsCompletedByAll [get]

Gets a value indicating whether the turn is completed by all.

true if this turn is completed by all; otherwise, false.

8.107.4.3 IsFinishedByMe

bool IsFinishedByMe [get]

Gets a value indicating whether the current turn is finished by me.

true if the current turn is finished by me; otherwise, false.

8.107.4.4 IsOver

bool IsOver [get]

Gets a value indicating whether the current turn is over. That is the ElapsedTimeinTurn is greater or equal to the
TurnDuration

true if the current turn is over; otherwise, false.

8.107.4.5 RemainingSecondsInTurn

float RemainingSecondsInTurn [get]

Gets the remaining seconds for the current turn. Ranges from 0 to TurnDuration

The remaining seconds fo the current turn

Generated by Doxygen

8.108 RaiseEventOptions Class Reference 369

8.107.4.6 Turn

int Turn [get]

Wraps accessing the "turn" custom properties of a room.

The turn index

8.108 RaiseEventOptions Class Reference

Aggregates several less-often used options for operation RaiseEvent. See field descriptions for usage details.

Public Attributes

• EventCaching CachingOption

Defines if the server should simply send the event, put it in the cache or remove events that are like this one.

• byte InterestGroup

The number of the Interest Group to send this to. 0 goes to all users but to get 1 and up, clients must subscribe to the
group first.

• int[] TargetActors

A list of Player.ActorNumbers to send this event to. You can implement events that just go to specific users this way.

• ReceiverGroup Receivers

Sends the event to All, MasterClient or Others (default). Be careful with MasterClient, as the client might disconnect
before it got the event and it gets lost.

• byte SequenceChannel

Events are ordered per "channel". If you have events that are independent of others, they can go into another
sequence or channel.

• WebFlags Flags = WebFlags.Default

Optional flags to be used in Photon client SDKs with Op RaiseEvent and Op SetProperties.

Static Public Attributes

• static readonly RaiseEventOptions Default = new RaiseEventOptions()

Default options: CachingOption: DoNotCache, InterestGroup: 0, targetActors: null, receivers: Others, sequence←↩

Channel: 0.

8.108.1 Detailed Description

Aggregates several less-often used options for operation RaiseEvent. See field descriptions for usage details.

8.108.2 Member Data Documentation

Generated by Doxygen

370 Class Documentation

8.108.2.1 CachingOption

EventCaching CachingOption

Defines if the server should simply send the event, put it in the cache or remove events that are like this one.

When using option: SliceSetIndex, SlicePurgeIndex or SlicePurgeUpToIndex, set a CacheSliceIndex. All other
options except SequenceChannel get ignored.

8.108.2.2 Default

readonly RaiseEventOptions Default = new RaiseEventOptions() [static]

Default options: CachingOption: DoNotCache, InterestGroup: 0, targetActors: null, receivers: Others, sequence←↩

Channel: 0.

8.108.2.3 Flags

WebFlags Flags = WebFlags.Default

Optional flags to be used in Photon client SDKs with Op RaiseEvent and Op SetProperties.

Introduced mainly for webhooks 1.2 to control behavior of forwarded HTTP requests.

8.108.2.4 InterestGroup

byte InterestGroup

The number of the Interest Group to send this to. 0 goes to all users but to get 1 and up, clients must subscribe to
the group first.

8.108.2.5 Receivers

ReceiverGroup Receivers

Sends the event to All, MasterClient or Others (default). Be careful with MasterClient, as the client might disconnect
before it got the event and it gets lost.

8.108.2.6 SequenceChannel

byte SequenceChannel

Events are ordered per "channel". If you have events that are independent of others, they can go into another
sequence or channel.

Generated by Doxygen

8.109 Region Class Reference 371

8.108.2.7 TargetActors

int [] TargetActors

A list of Player.ActorNumbers to send this event to. You can implement events that just go to specific users this way.

8.109 Region Class Reference

Public Member Functions

• Region (string code, string address)
• Region (string code, int ping)
• override string ToString ()
• string ToString (bool compact=false)

Properties

• string Code [get]
• string Cluster [get]

Unlike the CloudRegionCode, this may contain cluster information.

• string HostAndPort [get, set]
• int Ping [get, set]
• bool WasPinged [get]

8.109.1 Property Documentation

8.109.1.1 Cluster

string Cluster [get]

Unlike the CloudRegionCode, this may contain cluster information.

8.110 RegionHandler Class Reference

Provides methods to work with Photon's regions (Photon Cloud) and can be use to find the one with best ping.

Public Member Functions

• string GetResults ()
• void SetRegions (OperationResponse opGetRegions)
• RegionHandler (ushort masterServerPortOverride=0)
• bool PingMinimumOfRegions (Action< RegionHandler > onCompleteCallback, string previousSummary)

Generated by Doxygen

372 Class Documentation

Static Public Attributes

• static Type PingImplementation

The implementation of PhotonPing to use for region pinging (Best Region detection).

Properties

• List< Region > EnabledRegions [get, set]

A list of region names for the Photon Cloud. Set by the result of OpGetRegions().

• Region BestRegion [get]

When PingMinimumOfRegions was called and completed, the BestRegion is identified by best ping.

• string SummaryToCache [get]

This value summarizes the results of pinging currently available regions (after PingMinimumOfRegions finished).

• bool IsPinging [get]

8.110.1 Detailed Description

Provides methods to work with Photon's regions (Photon Cloud) and can be use to find the one with best ping.

When a client uses a Name Server to fetch the list of available regions, the LoadBalancingClient will create a
RegionHandler and provide it via the OnRegionListReceived callback.

Your logic can decide to either connect to one of those regional servers, or it may use PingMinimumOfRegions to
test which region provides the best ping.

It makes sense to make clients "sticky" to a region when one gets selected. This can be achieved by storing the
SummaryToCache value, once pinging was done. When the client connects again, the previous SummaryToCache
helps limiting the number of regions to ping. In best case, only the previously selected region gets re-pinged and if
the current ping is not much worse, this one region is used again.

8.110.2 Member Data Documentation

8.110.2.1 PingImplementation

Type PingImplementation [static]

The implementation of PhotonPing to use for region pinging (Best Region detection).

Defaults to null, which means the Type is set automatically.

8.110.3 Property Documentation

Generated by Doxygen

8.111 RegionPinger Class Reference 373

8.110.3.1 BestRegion

Region BestRegion [get]

When PingMinimumOfRegions was called and completed, the BestRegion is identified by best ping.

8.110.3.2 EnabledRegions

List<Region> EnabledRegions [get], [set]

A list of region names for the Photon Cloud. Set by the result of OpGetRegions().

Implement ILoadBalancingCallbacks and register for the callbacks to get OnRegionListReceived(RegionHandler
regionHandler). You can also put a "case OperationCode.GetRegions:" into your OnOperationResponse method to
notice when the result is available.

8.110.3.3 SummaryToCache

string SummaryToCache [get]

This value summarizes the results of pinging currently available regions (after PingMinimumOfRegions finished).

This value should be stored in the client by the game logic. When connecting again, use it as previous summary to
speed up pinging regions and to make the best region sticky for the client.

8.111 RegionPinger Class Reference

Public Member Functions

• RegionPinger (Region region, Action< Region > onDoneCallback)
• bool Start ()

Starts the ping routine for the assigned region.

• string GetResults ()

Static Public Member Functions

• static string ResolveHost (string hostName)

Attempts to resolve a hostname into an IP string or returns empty string if that fails.

Public Attributes

• int CurrentAttempt = 0

Generated by Doxygen

374 Class Documentation

Static Public Attributes

• static int Attempts = 5
• static bool IgnoreInitialAttempt = true
• static int MaxMilliseconsPerPing = 800
• static int PingWhenFailed = Attempts ∗ MaxMilliseconsPerPing

Properties

• bool Done [get]

8.111.1 Member Function Documentation

8.111.1.1 ResolveHost()

static string ResolveHost (

string hostName) [static]

Attempts to resolve a hostname into an IP string or returns empty string if that fails.

To be compatible with most platforms, the address family is checked like this:
if (ipAddress.AddressFamily.ToString().Contains("6")) // ipv6...

Parameters

hostName Hostname to resolve.

Returns

IP string or empty string if resolution fails

8.111.1.2 Start()

bool Start ()

Starts the ping routine for the assigned region.

Pinging runs in a ThreadPool worker item or (if needed) in a Thread. WebGL runs pinging on the Main Thread as
coroutine.

Returns

Always true.

Generated by Doxygen

8.112 Room Class Reference 375

8.112 Room Class Reference

This class represents a room a client joins/joined.

Inherits RoomInfo.

Public Member Functions

• Room (string roomName, RoomOptions options, bool isOffline=false)

Creates a Room (representation) with given name and properties and the "listing options" as provided by parameters.

• virtual bool SetCustomProperties (Hashtable propertiesToSet, Hashtable expectedProperties=null, WebFlags
webFlags=null)

Updates and synchronizes this Room's Custom Properties. Optionally, expectedProperties can be provided as con-
dition.

• bool SetPropertiesListedInLobby (string[] lobbyProps)

Enables you to define the properties available in the lobby if not all properties are needed to pick a room.

• bool SetMasterClient (Player masterClientPlayer)

Asks the server to assign another player as Master Client of your current room.

• virtual bool AddPlayer (Player player)

Checks if the player is in the room's list already and calls StorePlayer() if not.

• virtual Player StorePlayer (Player player)

Updates a player reference in the Players dictionary (no matter if it existed before or not).

• virtual Player GetPlayer (int id, bool findMaster=false)

Tries to find the player with given actorNumber (a.k.a. ID). Only useful when in a Room, as IDs are only valid per
Room.

• bool ClearExpectedUsers ()

Attempts to remove all current expected users from the server's Slot Reservation list.

• bool SetExpectedUsers (string[] newExpectedUsers)

Attempts to update the expected users from the server's Slot Reservation list.

• override string ToString ()

Returns a summary of this Room instance as string.

• new string ToStringFull ()

Returns a summary of this Room instance as longer string, including Custom Properties.

Properties

• LoadBalancingClient LoadBalancingClient [get, set]

A reference to the LoadBalancingClient which is currently keeping the connection and state.

• new string Name [get, set]

The name of a room. Unique identifier (per region and virtual appid) for a room/match.

• bool IsOffline [get]
• new bool IsOpen [get, set]

Defines if the room can be joined.

• new bool IsVisible [get, set]

Defines if the room is listed in its lobby.

• new byte MaxPlayers [get, set]

Sets a limit of players to this room. This property is synced and shown in lobby, too. If the room is full (players count
== maxplayers), joining this room will fail.

• new byte PlayerCount [get]

The count of players in this Room (using this.Players.Count).

Generated by Doxygen

376 Class Documentation

• Dictionary< int, Player > Players [get]

While inside a Room, this is the list of players who are also in that room.

• string[] ExpectedUsers [get]

List of users who are expected to join this room. In matchmaking, Photon blocks a slot for each of these UserIDs out
of the MaxPlayers.

• int PlayerTtl [get, set]

Player Time To Live. How long any player can be inactive (due to disconnect or leave) before the user gets removed
from the playerlist (freeing a slot).

• int EmptyRoomTtl [get, set]

Room Time To Live. How long a room stays available (and in server-memory), after the last player becomes inactive.
After this time, the room gets persisted or destroyed.

• int MasterClientId [get]

The ID (actorNumber, actorNumber) of the player who's the master of this Room. Note: This changes when the
current master leaves the room.

• string[] PropertiesListedInLobby [get]

Gets a list of custom properties that are in the RoomInfo of the Lobby. This list is defined when creating the room and
can't be changed afterwards. Compare: LoadBalancingClient.OpCreateRoom()

• bool AutoCleanUp [get]

Gets if this room cleans up the event cache when a player (actor) leaves.

• bool BroadcastPropertiesChangeToAll [get]

Define if the client who calls SetProperties should receive the properties update event or not.

• bool SuppressRoomEvents [get]

Define if Join and Leave events should not be sent to clients in the room.

• bool SuppressPlayerInfo [get]

Extends SuppressRoomEvents: Define if Join and Leave events but also the actors' list and their respective properties
should not be sent to clients.

• bool PublishUserId [get]

Define if UserIds of the players are broadcast in the room. Useful for FindFriends and reserving slots for expected
users.

• bool DeleteNullProperties [get]

Define if actor or room properties with null values are removed on the server or kept.

Additional Inherited Members

8.112.1 Detailed Description

This class represents a room a client joins/joined.

Contains a list of current players, their properties and those of this room, too. A room instance has a number of
"well known" properties like IsOpen, MaxPlayers which can be changed. Your own, custom properties can be set
via SetCustomProperties() while being in the room.

Typically, this class should be extended by a game-specific implementation with logic and extra features.

8.112.2 Constructor & Destructor Documentation

Generated by Doxygen

8.112 Room Class Reference 377

8.112.2.1 Room()

Room (

string roomName,

RoomOptions options,

bool isOffline = false)

Creates a Room (representation) with given name and properties and the "listing options" as provided by parame-
ters.

Generated by Doxygen

378 Class Documentation

Parameters

roomName Name of the room (can be null until it's actually created on server).

options Room options.

8.112.3 Member Function Documentation

8.112.3.1 AddPlayer()

virtual bool AddPlayer (

Player player) [virtual]

Checks if the player is in the room's list already and calls StorePlayer() if not.

Parameters

player The new player - identified by ID.

Returns

False if the player could not be added (cause it was in the list already).

8.112.3.2 ClearExpectedUsers()

bool ClearExpectedUsers ()

Attempts to remove all current expected users from the server's Slot Reservation list.

Note that this operation can conflict with new/other users joining. They might be adding users to the list of expected
users before or after this client called ClearExpectedUsers.

This room's expectedUsers value will update, when the server sends a successful update.

Internals: This methods wraps up setting the ExpectedUsers property of a room.

Returns

If the operation could be sent to the server.

8.112.3.3 GetPlayer()

virtual Player GetPlayer (

int id,

bool findMaster = false) [virtual]

Tries to find the player with given actorNumber (a.k.a. ID). Only useful when in a Room, as IDs are only valid per
Room.

Generated by Doxygen

8.112 Room Class Reference 379

Parameters

id ID to look for.
findMaster If true, the Master Client is returned for ID == 0.

Returns

The player with the ID or null.

8.112.3.4 SetCustomProperties()

virtual bool SetCustomProperties (

Hashtable propertiesToSet,

Hashtable expectedProperties = null,

WebFlags webFlags = null) [virtual]

Updates and synchronizes this Room's Custom Properties. Optionally, expectedProperties can be provided as
condition.

Custom Properties are a set of string keys and arbitrary values which is synchronized for the players in a Room.
They are available when the client enters the room, as they are in the response of OpJoin and OpCreate.

Custom Properties either relate to the (current) Room or a Player (in that Room).

Both classes locally cache the current key/values and make them available as property: CustomProperties. This is
provided only to read them. You must use the method SetCustomProperties to set/modify them.

Any client can set any Custom Properties anytime (when in a room). It's up to the game logic to organize how they
are best used.

You should call SetCustomProperties only with key/values that are new or changed. This reduces traffic and perfor-
mance.

Unless you define some expectedProperties, setting key/values is always permitted. In this case, the property-
setting client will not receive the new values from the server but instead update its local cache in SetCustom←↩

Properties.

If you define expectedProperties, the server will skip updates if the server property-cache does not contain all
expectedProperties with the same values. In this case, the property-setting client will get an update from the server
and update it's cached key/values at about the same time as everyone else.

The benefit of using expectedProperties can be only one client successfully sets a key from one known value to
another. As example: Store who owns an item in a Custom Property "ownedBy". It's 0 initally. When multiple players
reach the item, they all attempt to change "ownedBy" from 0 to their actorNumber. If you use expectedProperties
{"ownedBy", 0} as condition, the first player to take the item will have it (and the others fail to set the ownership).

Properties get saved with the game state for Turnbased games (which use IsPersistent = true).

Parameters

propertiesToSet Hashtable of Custom Properties that changes.

expectedProperties Provide some keys/values to use as condition for setting the new values. Client must be
in room.

webFlags Defines if this SetCustomProperties-operation gets forwarded to your WebHooks. Client
must be in room.

Generated by Doxygen

380 Class Documentation

Returns

False if propertiesToSet is null or empty or have zero string keys. True in offline mode even if expected←↩

Properties or webFlags are used. Otherwise, returns if this operation could be sent to the server.

8.112.3.5 SetExpectedUsers()

bool SetExpectedUsers (

string[] newExpectedUsers)

Attempts to update the expected users from the server's Slot Reservation list.

Note that this operation can conflict with new/other users joining. They might be adding users to the list of expected
users before or after this client called SetExpectedUsers.

This room's expectedUsers value will update, when the server sends a successful update.

Internals: This methods wraps up setting the ExpectedUsers property of a room.

Parameters

newExpectedUsers The new array of UserIDs to be reserved in the room.

Returns

If the operation could be sent to the server.

8.112.3.6 SetMasterClient()

bool SetMasterClient (

Player masterClientPlayer)

Asks the server to assign another player as Master Client of your current room.

RaiseEvent has the option to send messages only to the Master Client of a room. SetMasterClient affects which
client gets those messages.

This method calls an operation on the server to set a new Master Client, which takes a roundtrip. In case of success,
this client and the others get the new Master Client from the server.

SetMasterClient tells the server which current Master Client should be replaced with the new one. It will fail, if
anything switches the Master Client moments earlier. There is no callback for this error. All clients should get the
new Master Client assigned by the server anyways.

See also: MasterClientId

Generated by Doxygen

8.112 Room Class Reference 381

Parameters

masterClientPlayer The player to become the next Master Client.

Returns

False when this operation couldn't be done currently. Requires a v4 Photon Server.

8.112.3.7 SetPropertiesListedInLobby()

bool SetPropertiesListedInLobby (

string[] lobbyProps)

Enables you to define the properties available in the lobby if not all properties are needed to pick a room.

Limit the amount of properties sent to users in the lobby to improve speed and stability.

Parameters

lobbyProps An array of custom room property names to forward to the lobby.

Returns

If the operation could be sent to the server.

8.112.3.8 StorePlayer()

virtual Player StorePlayer (

Player player) [virtual]

Updates a player reference in the Players dictionary (no matter if it existed before or not).

Parameters

player The Player instance to insert into the room.

8.112.3.9 ToString()

override string ToString ()

Returns a summary of this Room instance as string.

Generated by Doxygen

382 Class Documentation

Returns

Summary of this Room instance.

8.112.3.10 ToStringFull()

new string ToStringFull ()

Returns a summary of this Room instance as longer string, including Custom Properties.

Returns

Summary of this Room instance.

8.112.4 Property Documentation

8.112.4.1 AutoCleanUp

bool AutoCleanUp [get]

Gets if this room cleans up the event cache when a player (actor) leaves.

This affects which events joining players get.

Set in room creation via RoomOptions.CleanupCacheOnLeave.

Within PUN, auto cleanup of events means that cached RPCs and instantiated networked objects are deleted from
the room.

8.112.4.2 BroadcastPropertiesChangeToAll

bool BroadcastPropertiesChangeToAll [get]

Define if the client who calls SetProperties should receive the properties update event or not.

8.112.4.3 DeleteNullProperties

bool DeleteNullProperties [get]

Define if actor or room properties with null values are removed on the server or kept.

Generated by Doxygen

8.112 Room Class Reference 383

8.112.4.4 EmptyRoomTtl

int EmptyRoomTtl [get], [set]

Room Time To Live. How long a room stays available (and in server-memory), after the last player becomes inactive.
After this time, the room gets persisted or destroyed.

8.112.4.5 ExpectedUsers

string [] ExpectedUsers [get]

List of users who are expected to join this room. In matchmaking, Photon blocks a slot for each of these UserIDs
out of the MaxPlayers.

The corresponding feature in Photon is called "Slot Reservation" and can be found in the doc pages. Define
expected players in the methods: LoadBalancingClient.OpCreateRoom, LoadBalancingClient.OpJoinRoom and
LoadBalancingClient.OpJoinRandomRoom.

8.112.4.6 IsOpen

new bool IsOpen [get], [set]

Defines if the room can be joined.

This does not affect listing in a lobby but joining the room will fail if not open. If not open, the room is excluded from
random matchmaking. Due to racing conditions, found matches might become closed while users are trying to join.
Simply re-connect to master and find another. Use property "IsVisible" to not list the room.

As part of RoomInfo this can't be set. As part of a Room (which the player joined), the setter will update the server
and all clients.

8.112.4.7 IsVisible

new bool IsVisible [get], [set]

Defines if the room is listed in its lobby.

Rooms can be created invisible, or changed to invisible. To change if a room can be joined, use property: open.

As part of RoomInfo this can't be set. As part of a Room (which the player joined), the setter will update the server
and all clients.

8.112.4.8 LoadBalancingClient

LoadBalancingClient LoadBalancingClient [get], [set]

A reference to the LoadBalancingClient which is currently keeping the connection and state.

Generated by Doxygen

384 Class Documentation

8.112.4.9 MasterClientId

int MasterClientId [get]

The ID (actorNumber, actorNumber) of the player who's the master of this Room. Note: This changes when the
current master leaves the room.

8.112.4.10 MaxPlayers

new byte MaxPlayers [get], [set]

Sets a limit of players to this room. This property is synced and shown in lobby, too. If the room is full (players count
== maxplayers), joining this room will fail.

As part of RoomInfo this can't be set. As part of a Room (which the player joined), the setter will update the server
and all clients.

8.112.4.11 Name

new string Name [get], [set]

The name of a room. Unique identifier (per region and virtual appid) for a room/match.

The name can't be changed once it's set by the server.

8.112.4.12 PlayerCount

new byte PlayerCount [get]

The count of players in this Room (using this.Players.Count).

8.112.4.13 Players

Dictionary<int, Player> Players [get]

While inside a Room, this is the list of players who are also in that room.

8.112.4.14 PlayerTtl

int PlayerTtl [get], [set]

Player Time To Live. How long any player can be inactive (due to disconnect or leave) before the user gets removed
from the playerlist (freeing a slot).

Generated by Doxygen

8.113 RoomInfo Class Reference 385

8.112.4.15 PropertiesListedInLobby

string [] PropertiesListedInLobby [get]

Gets a list of custom properties that are in the RoomInfo of the Lobby. This list is defined when creating the room
and can't be changed afterwards. Compare: LoadBalancingClient.OpCreateRoom()

You could name properties that are not set from the beginning. Those will be synced with the lobby when added
later on.

8.112.4.16 PublishUserId

bool PublishUserId [get]

Define if UserIds of the players are broadcast in the room. Useful for FindFriends and reserving slots for expected
users.

8.112.4.17 SuppressPlayerInfo

bool SuppressPlayerInfo [get]

Extends SuppressRoomEvents: Define if Join and Leave events but also the actors' list and their respective prop-
erties should not be sent to clients.

8.112.4.18 SuppressRoomEvents

bool SuppressRoomEvents [get]

Define if Join and Leave events should not be sent to clients in the room.

8.113 RoomInfo Class Reference

A simplified room with just the info required to list and join, used for the room listing in the lobby. The properties are
not settable (IsOpen, MaxPlayers, etc).

Inherited by Room.

Public Member Functions

• override bool Equals (object other)

Makes RoomInfo comparable (by name).

• override int GetHashCode ()

Accompanies Equals, using the name's HashCode as return.

• override string ToString ()

Returns most interesting room values as string.

• string ToStringFull ()

Returns most interesting room values as string, including custom properties.

Generated by Doxygen

386 Class Documentation

Public Attributes

• bool RemovedFromList

Used in lobby, to mark rooms that are no longer listed (for being full, closed or hidden).

• int masterClientId

Backing field for master client id (actorNumber). defined by server in room props and ev leave.

Protected Attributes

• byte maxPlayers = 0

Backing field for property.

• int emptyRoomTtl = 0

Backing field for property.

• int playerTtl = 0

Backing field for property.

• string[] expectedUsers

Backing field for property.

• bool isOpen = true

Backing field for property.

• bool isVisible = true

Backing field for property.

• bool autoCleanUp = true

Backing field for property. False unless the GameProperty is set to true (else it's not sent).

• string name

Backing field for property.

• string[] propertiesListedInLobby

Backing field for property.

Properties

• Hashtable CustomProperties [get]

Read-only "cache" of custom properties of a room. Set via Room.SetCustomProperties (not available for RoomInfo
class!).

• string Name [get]

The name of a room. Unique identifier for a room/match (per AppId + game-Version).

• int PlayerCount [get]

Count of players currently in room. This property is overwritten by the Room class (used when you're in a Room).

• byte MaxPlayers [get]

The limit of players for this room. This property is shown in lobby, too. If the room is full (players count == maxplayers),
joining this room will fail.

• bool IsOpen [get]

Defines if the room can be joined. This does not affect listing in a lobby but joining the room will fail if not open. If
not open, the room is excluded from random matchmaking. Due to racing conditions, found matches might become
closed even while you join them. Simply re-connect to master and find another. Use property "IsVisible" to not list the
room.

• bool IsVisible [get]

Defines if the room is listed in its lobby. Rooms can be created invisible, or changed to invisible. To change if a room
can be joined, use property: open.

Generated by Doxygen

8.113 RoomInfo Class Reference 387

8.113.1 Detailed Description

A simplified room with just the info required to list and join, used for the room listing in the lobby. The properties are
not settable (IsOpen, MaxPlayers, etc).

This class resembles info about available rooms, as sent by the Master server's lobby. Consider all values as
readonly. None are synced (only updated by events by server).

8.113.2 Member Function Documentation

8.113.2.1 Equals()

override bool Equals (

object other)

Makes RoomInfo comparable (by name).

8.113.2.2 GetHashCode()

override int GetHashCode ()

Accompanies Equals, using the name's HashCode as return.

Returns

8.113.2.3 ToString()

override string ToString ()

Returns most interesting room values as string.

Returns

Summary of this RoomInfo instance.

Generated by Doxygen

388 Class Documentation

8.113.2.4 ToStringFull()

string ToStringFull ()

Returns most interesting room values as string, including custom properties.

Returns

Summary of this RoomInfo instance.

8.113.3 Member Data Documentation

8.113.3.1 autoCleanUp

bool autoCleanUp = true [protected]

Backing field for property. False unless the GameProperty is set to true (else it's not sent).

8.113.3.2 emptyRoomTtl

int emptyRoomTtl = 0 [protected]

Backing field for property.

8.113.3.3 expectedUsers

string [] expectedUsers [protected]

Backing field for property.

8.113.3.4 isOpen

bool isOpen = true [protected]

Backing field for property.

Generated by Doxygen

8.113 RoomInfo Class Reference 389

8.113.3.5 isVisible

bool isVisible = true [protected]

Backing field for property.

8.113.3.6 masterClientId

int masterClientId

Backing field for master client id (actorNumber). defined by server in room props and ev leave.

8.113.3.7 maxPlayers

byte maxPlayers = 0 [protected]

Backing field for property.

8.113.3.8 name

string name [protected]

Backing field for property.

8.113.3.9 playerTtl

int playerTtl = 0 [protected]

Backing field for property.

8.113.3.10 propertiesListedInLobby

string [] propertiesListedInLobby [protected]

Backing field for property.

Generated by Doxygen

390 Class Documentation

8.113.3.11 RemovedFromList

bool RemovedFromList

Used in lobby, to mark rooms that are no longer listed (for being full, closed or hidden).

8.113.4 Property Documentation

8.113.4.1 CustomProperties

Hashtable CustomProperties [get]

Read-only "cache" of custom properties of a room. Set via Room.SetCustomProperties (not available for RoomInfo
class!).

All keys are string-typed and the values depend on the game/application.

Room.SetCustomProperties

8.113.4.2 IsOpen

bool IsOpen [get]

Defines if the room can be joined. This does not affect listing in a lobby but joining the room will fail if not open. If
not open, the room is excluded from random matchmaking. Due to racing conditions, found matches might become
closed even while you join them. Simply re-connect to master and find another. Use property "IsVisible" to not list
the room.

As part of RoomInfo this can't be set. As part of a Room (which the player joined), the setter will update the server
and all clients.

8.113.4.3 IsVisible

bool IsVisible [get]

Defines if the room is listed in its lobby. Rooms can be created invisible, or changed to invisible. To change if a room
can be joined, use property: open.

As part of RoomInfo this can't be set. As part of a Room (which the player joined), the setter will update the server
and all clients.

8.113.4.4 MaxPlayers

byte MaxPlayers [get]

The limit of players for this room. This property is shown in lobby, too. If the room is full (players count == maxplay-
ers), joining this room will fail.

As part of RoomInfo this can't be set. As part of a Room (which the player joined), the setter will update the server
and all clients.

Generated by Doxygen

8.114 RoomOptions Class Reference 391

8.113.4.5 Name

string Name [get]

The name of a room. Unique identifier for a room/match (per AppId + game-Version).

8.113.4.6 PlayerCount

int PlayerCount [get]

Count of players currently in room. This property is overwritten by the Room class (used when you're in a Room).

8.114 RoomOptions Class Reference

Wraps up common room properties needed when you create rooms. Read the individual entries for more details.

Public Attributes

• byte MaxPlayers

Max number of players that can be in the room at any time. 0 means "no limit".
• int PlayerTtl

Time To Live (TTL) for an 'actor' in a room. If a client disconnects, this actor is inactive first and removed after this
timeout. In milliseconds.

• int EmptyRoomTtl

Time To Live (TTL) for a room when the last player leaves. Keeps room in memory for case a player re-joins soon. In
milliseconds.

• Hashtable CustomRoomProperties

The room's custom properties to set. Use string keys!
• string[] CustomRoomPropertiesForLobby = new string[0]

Defines the custom room properties that get listed in the lobby.
• string[] Plugins

Informs the server of the expected plugin setup.

Properties

• bool IsVisible [get, set]

Defines if this room is listed in the lobby. If not, it also is not joined randomly.
• bool IsOpen [get, set]

Defines if this room can be joined at all.
• bool CleanupCacheOnLeave [get, set]

Removes a user's events and properties from the room when a user leaves.
• bool SuppressRoomEvents [get, set]

Tells the server to skip room events for joining and leaving players.
• bool SuppressPlayerInfo [get, set]

Disables events join and leave from the server as well as property broadcasts in a room (to minimize traffic)
• bool PublishUserId [get, set]

Defines if the UserIds of players get "published" in the room. Useful for FindFriends, if players want to play another
game together.

• bool DeleteNullProperties [get, set]

Optionally, properties get deleted, when null gets assigned as value. Defaults to off / false.
• bool BroadcastPropsChangeToAll [get, set]

By default, property changes are sent back to the client that's setting them to avoid de-sync when properties are set
concurrently.

Generated by Doxygen

392 Class Documentation

8.114.1 Detailed Description

Wraps up common room properties needed when you create rooms. Read the individual entries for more details.

This directly maps to the fields in the Room class.

8.114.2 Member Data Documentation

8.114.2.1 CustomRoomProperties

Hashtable CustomRoomProperties

The room's custom properties to set. Use string keys!

Custom room properties are any key-values you need to define the game's setup. The shorter your keys are, the
better. Example: Map, Mode (could be "m" when used with "Map"), TileSet (could be "t").

8.114.2.2 CustomRoomPropertiesForLobby

string [] CustomRoomPropertiesForLobby = new string[0]

Defines the custom room properties that get listed in the lobby.

Name the custom room properties that should be available to clients that are in a lobby. Use with care. Unless a
custom property is essential for matchmaking or user info, it should not be sent to the lobby, which causes traffic
and delays for clients in the lobby.

Default: No custom properties are sent to the lobby.

8.114.2.3 EmptyRoomTtl

int EmptyRoomTtl

Time To Live (TTL) for a room when the last player leaves. Keeps room in memory for case a player re-joins soon.
In milliseconds.

8.114.2.4 MaxPlayers

byte MaxPlayers

Max number of players that can be in the room at any time. 0 means "no limit".

Generated by Doxygen

8.114 RoomOptions Class Reference 393

8.114.2.5 PlayerTtl

int PlayerTtl

Time To Live (TTL) for an 'actor' in a room. If a client disconnects, this actor is inactive first and removed after this
timeout. In milliseconds.

8.114.2.6 Plugins

string [] Plugins

Informs the server of the expected plugin setup.

The operation will fail in case of a plugin missmatch returning error code PluginMismatch 32757(0x7FFF - 10).
Setting string[]{} means the client expects no plugin to be setup. Note: for backwards compatibility null omits any
check.

8.114.3 Property Documentation

8.114.3.1 BroadcastPropsChangeToAll

bool BroadcastPropsChangeToAll [get], [set]

By default, property changes are sent back to the client that's setting them to avoid de-sync when properties are set
concurrently.

This option is enables by default to fix this scenario:

1) On server, room property ABC is set to value FOO, which triggers notifications to all the clients telling them
that the property changed. 2) While that notification is in flight, a client sets the ABC property to value BAR. 3)
Client receives notification from the server and changes it �? s local copy of ABC to FOO. 4) Server receives the set
operation and changes the official value of ABC to BAR, but never notifies the client that sent the set operation that
the value is now BAR.

Without this option, the client that set the value to BAR never hears from the server that the official copy has been
updated to BAR, and thus gets stuck with a value of FOO.

8.114.3.2 CleanupCacheOnLeave

bool CleanupCacheOnLeave [get], [set]

Removes a user's events and properties from the room when a user leaves.

This makes sense when in rooms where players can't place items in the room and just vanish entirely. When you
disable this, the event history can become too long to load if the room stays in use indefinitely. Default: true. Cleans
up the cache and props of leaving users.

Generated by Doxygen

394 Class Documentation

8.114.3.3 DeleteNullProperties

bool DeleteNullProperties [get], [set]

Optionally, properties get deleted, when null gets assigned as value. Defaults to off / false.

When Op SetProperties is setting a key's value to null, the server and clients should remove the key/value from the
Custom Properties. By default, the server keeps the keys (and null values) and sends them to joining players.

Important: Only when SetProperties does a "broadcast", the change (key, value = null) is sent to clients to update
accordingly. This applies to Custom Properties for rooms and actors/players.

8.114.3.4 IsOpen

bool IsOpen [get], [set]

Defines if this room can be joined at all.

If a room is closed, no player can join this. As example this makes sense when 3 of 4 possible players start their
gameplay early and don't want anyone to join during the game. The room can still be listed in the lobby (set isVisible
to control lobby-visibility).

8.114.3.5 IsVisible

bool IsVisible [get], [set]

Defines if this room is listed in the lobby. If not, it also is not joined randomly.

A room that is not visible will be excluded from the room lists that are sent to the clients in lobbies. An invisible room
can be joined by name but is excluded from random matchmaking.

Use this to "hide" a room and simulate "private rooms". Players can exchange a roomname and create it invisble to
avoid anyone else joining it.

8.114.3.6 PublishUserId

bool PublishUserId [get], [set]

Defines if the UserIds of players get "published" in the room. Useful for FindFriends, if players want to play another
game together.

When you set this to true, Photon will publish the UserIds of the players in that room. In that case, you can use
PhotonPlayer.userId, to access any player's userID. This is useful for FindFriends and to set "expected users" to
reserve slots in a room.

8.114.3.7 SuppressPlayerInfo

bool SuppressPlayerInfo [get], [set]

Disables events join and leave from the server as well as property broadcasts in a room (to minimize traffic)

Generated by Doxygen

8.115 SceneManagerHelper Class Reference 395

8.114.3.8 SuppressRoomEvents

bool SuppressRoomEvents [get], [set]

Tells the server to skip room events for joining and leaving players.

Using this makes the client unaware of the other players in a room. That can save some traffic if you have some
server logic that updates players but it can also limit the client's usability.

8.115 SceneManagerHelper Class Reference

Properties

• static string ActiveSceneName [get]

• static int ActiveSceneBuildIndex [get]

8.116 ScoreExtensions Class Reference

Static Public Member Functions

• static void SetScore (this Player player, int newScore)
• static void AddScore (this Player player, int scoreToAddToCurrent)
• static int GetScore (this Player player)

8.117 ServerSettings Class Reference

Collection of connection-relevant settings, used internally by PhotonNetwork.ConnectUsingSettings.

Inherits ScriptableObject.

Public Member Functions

• void UseCloud (string cloudAppid, string code="")

Sets appid and region code in the AppSettings. Used in Editor.

• override string ToString ()

String summary of the AppSettings.

Static Public Member Functions

• static bool IsAppId (string val)

Checks if a string is a Guid by attempting to create one.

• static void ResetBestRegionCodeInPreferences ()

Sets the "best region summary" in the preferences to null. On next start, the client will ping all available.

Generated by Doxygen

396 Class Documentation

Public Attributes

• AppSettings AppSettings
• string DevRegion

Region that will be used by the Editor and Development Builds. This ensures all users will be in the same region for
testing.

• PunLogLevel PunLogging = PunLogLevel.ErrorsOnly
• bool EnableSupportLogger
• bool RunInBackground = true
• bool StartInOfflineMode
• List< string > RpcList = new List<string>()

Properties

• static string BestRegionSummaryInPreferences [get]

Gets the "best region summary" from the preferences.

8.117.1 Detailed Description

Collection of connection-relevant settings, used internally by PhotonNetwork.ConnectUsingSettings.

Includes the AppSettings class from the Realtime APIs plus some other, PUN-relevant, settings.

8.117.2 Member Function Documentation

8.117.2.1 IsAppId()

static bool IsAppId (

string val) [static]

Checks if a string is a Guid by attempting to create one.

Parameters

val The potential guid to check.

Returns

True if new Guid(val) did not fail.

8.117.2.2 ResetBestRegionCodeInPreferences()

static void ResetBestRegionCodeInPreferences () [static]

Generated by Doxygen

8.117 ServerSettings Class Reference 397

Sets the "best region summary" in the preferences to null. On next start, the client will ping all available.

8.117.2.3 ToString()

override string ToString ()

String summary of the AppSettings.

8.117.2.4 UseCloud()

void UseCloud (

string cloudAppid,

string code = "")

Sets appid and region code in the AppSettings. Used in Editor.

8.117.3 Member Data Documentation

8.117.3.1 DevRegion

string DevRegion

Region that will be used by the Editor and Development Builds. This ensures all users will be in the same region for
testing.

8.117.4 Property Documentation

8.117.4.1 BestRegionSummaryInPreferences

string BestRegionSummaryInPreferences [static], [get]

Gets the "best region summary" from the preferences.

The best region code in preferences.

Generated by Doxygen

398 Class Documentation

8.118 SmoothSyncMovement Class Reference

Smoothed out movement for network gameobjects

Inherits MonoBehaviourPun, and IPunObservable.

Public Member Functions

• void Awake ()
• void OnPhotonSerializeView (PhotonStream stream, PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

• void Update ()

Public Attributes

• float SmoothingDelay = 5

Additional Inherited Members

8.118.1 Detailed Description

Smoothed out movement for network gameobjects

8.118.2 Member Function Documentation

8.118.2.1 OnPhotonSerializeView()

void OnPhotonSerializeView (

PhotonStream stream,

PhotonMessageInfo info)

Called by PUN several times per second, so that your script can write and read synchronization data for the
PhotonView.

This method will be called in scripts that are assigned as Observed component of a PhotonView.
PhotonNetwork.SerializationRate affects how often this method is called.
PhotonNetwork.SendRate affects how often packages are sent by this client.

Implementing this method, you can customize which data a PhotonView regularly synchronizes. Your code defines
what is being sent (content) and how your data is used by receiving clients.

Unlike other callbacks, OnPhotonSerializeView only gets called when it is assigned to a PhotonView as Photon←↩

View.observed script.

To make use of this method, the PhotonStream is essential. It will be in "writing" mode" on the client that controls a
PhotonView (PhotonStream.IsWriting == true) and in "reading mode" on the remote clients that just receive that the
controlling client sends.

If you skip writing any value into the stream, PUN will skip the update. Used carefully, this can conserve bandwidth
and messages (which have a limit per room/second).

Note that OnPhotonSerializeView is not called on remote clients when the sender does not send any update. This
can't be used as "x-times per second Update()".

Implements IPunObservable.

Generated by Doxygen

8.119 StatesGui Class Reference 399

8.119 StatesGui Class Reference

Output detailed information about Pun Current states, using the old Unity UI framework.

Inherits MonoBehaviour.

Public Attributes

• Rect GuiOffset = new Rect(250, 0, 300, 300)
• bool DontDestroy = true
• bool ServerTimestamp
• bool DetailedConnection
• bool Server
• bool AppVersion
• bool UserId
• bool Room
• bool RoomProps
• bool EventsIn
• bool LocalPlayer
• bool PlayerProps
• bool Others
• bool Buttons
• bool ExpectedUsers

8.119.1 Detailed Description

Output detailed information about Pun Current states, using the old Unity UI framework.

8.120 SupportLogger Class Reference

Helper class to debug log basic information about Photon client and vital traffic statistics.

Inherits IConnectionCallbacks, IInRoomCallbacks, IMatchmakingCallbacks, and ILobbyCallbacks.

Public Member Functions

• void StartLogStats ()
• void StopLogStats ()
• void LogStats ()

Debug logs vital traffic statistics about the attached Photon Client.

• void OnConnected ()

Called to signal that the "low level connection" got established but before the client can call operation on the server.

• void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

• void OnFriendListUpdate (List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.

• void OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.

Generated by Doxygen

400 Class Documentation

• void OnLeftLobby ()

Called after leaving a lobby.

• void OnCreateRoomFailed (short returnCode, string message)

Called when the server couldn't create a room (OpCreateRoom failed).

• void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

• void OnJoinRoomFailed (short returnCode, string message)

Called when a previous OpJoinRoom call failed on the server.

• void OnJoinRandomFailed (short returnCode, string message)

Called when a previous OpJoinRandom call failed on the server.

• void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

• void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

• void OnDisconnected (DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or an explicit disconnect call

• void OnRegionListReceived (RegionHandler regionHandler)

Called when the Name Server provided a list of regions for your title.

• void OnRoomListUpdate (List< RoomInfo > roomList)

Called for any update of the room-listing while in a lobby (InLobby) on the Master Server.

• void OnPlayerEnteredRoom (Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

• void OnPlayerLeftRoom (Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

• void OnRoomPropertiesUpdate (Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

• void OnPlayerPropertiesUpdate (Player targetPlayer, Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

• void OnMasterClientSwitched (Player newMasterClient)

Called after switching to a new MasterClient when the current one leaves.

• void OnCustomAuthenticationResponse (Dictionary< string, object > data)

Called when your Custom Authentication service responds with additional data.

• void OnCustomAuthenticationFailed (string debugMessage)

Called when the custom authentication failed. Followed by disconnect!

• void OnLobbyStatisticsUpdate (List< TypedLobbyInfo > lobbyStatistics)

Called when the Master Server sent an update for the Lobby Statistics.

• void OnErrorInfo (ErrorInfo errorInfo)

Public Attributes

• bool LogTrafficStats = true

Toggle to enable or disable traffic statistics logging.

Properties

• LoadBalancingClient Client [get, set]

Photon client to log information and statistics from.

Generated by Doxygen

8.120 SupportLogger Class Reference 401

8.120.1 Detailed Description

Helper class to debug log basic information about Photon client and vital traffic statistics.

Set SupportLogger.Client for this to work.

8.120.2 Member Function Documentation

8.120.2.1 LogStats()

void LogStats ()

Debug logs vital traffic statistics about the attached Photon Client.

8.120.2.2 OnConnected()

void OnConnected ()

Called to signal that the "low level connection" got established but before the client can call operation on the server.

After the (low level transport) connection is established, the client will automatically send the Authentication opera-
tion, which needs to get a response before the client can call other operations.

Your logic should wait for either: OnRegionListReceived or OnConnectedToMaster.

This callback is useful to detect if the server can be reached at all (technically). Most often, it's enough to implement
OnDisconnected(DisconnectCause cause) and check for the cause.

This is not called for transitions from the masterserver to game servers.

Implements IConnectionCallbacks.

8.120.2.3 OnConnectedToMaster()

void OnConnectedToMaster ()

Called when the client is connected to the Master Server and ready for matchmaking and other tasks.

The list of available rooms won't become available unless you join a lobby via LoadBalancingClient.OpJoinLobby.
You can join rooms and create them even without being in a lobby. The default lobby is used in that case.

Implements IConnectionCallbacks.

Generated by Doxygen

402 Class Documentation

8.120.2.4 OnCreatedRoom()

void OnCreatedRoom ()

Called when this client created a room and entered it. OnJoinedRoom() will be called as well.

This callback is only called on the client which created a room (see OpCreateRoom).

As any client might close (or drop connection) anytime, there is a chance that the creator of a room does not execute
OnCreatedRoom.

If you need specific room properties or a "start signal", implement OnMasterClientSwitched() and make each new
MasterClient check the room's state.

Implements IMatchmakingCallbacks.

8.120.2.5 OnCreateRoomFailed()

void OnCreateRoomFailed (

short returnCode,

string message)

Called when the server couldn't create a room (OpCreateRoom failed).

Creating a room may fail for various reasons. Most often, the room already exists (roomname in use) or the
RoomOptions clash and it's impossible to create the room.

When creating a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.120.2.6 OnCustomAuthenticationFailed()

void OnCustomAuthenticationFailed (

string debugMessage)

Called when the custom authentication failed. Followed by disconnect!

Custom Authentication can fail due to user-input, bad tokens/secrets. If authentication is successful, this method is
not called. Implement OnJoinedLobby() or OnConnectedToMaster() (as usual).

Generated by Doxygen

8.120 SupportLogger Class Reference 403

During development of a game, it might also fail due to wrong configuration on the server side. In those cases,
logging the debugMessage is very important.

Unless you setup a custom authentication service for your app (in the Dashboard), this won't be called!

Generated by Doxygen

404 Class Documentation

Parameters

debugMessage Contains a debug message why authentication failed. This has to be fixed during development.

Implements IConnectionCallbacks.

8.120.2.7 OnCustomAuthenticationResponse()

void OnCustomAuthenticationResponse (

Dictionary< string, object > data)

Called when your Custom Authentication service responds with additional data.

Custom Authentication services can include some custom data in their response. When present, that data is made
available in this callback as Dictionary. While the keys of your data have to be strings, the values can be either string
or a number (in Json). You need to make extra sure, that the value type is the one you expect. Numbers become
(currently) int64.

Example: void OnCustomAuthenticationResponse(Dictionary<string, object> data) { ... }

https://doc.photonengine.com/en-us/realtime/current/reference/custom-authentication

Implements IConnectionCallbacks.

8.120.2.8 OnDisconnected()

void OnDisconnected (

DisconnectCause cause)

Called after disconnecting from the Photon server. It could be a failure or an explicit disconnect call

The reason for this disconnect is provided as DisconnectCause.

Implements IConnectionCallbacks.

8.120.2.9 OnFriendListUpdate()

void OnFriendListUpdate (

List< FriendInfo > friendList)

Called when the server sent the response to a FindFriends request.

After calling OpFindFriends, the Master Server will cache the friend list and send updates to the friend list. The
friends includes the name, userId, online state and the room (if any) for each requested user/friend.

Use the friendList to update your UI and store it, if the UI should highlight changes.

Implements IMatchmakingCallbacks.

Generated by Doxygen

8.120 SupportLogger Class Reference 405

8.120.2.10 OnJoinedLobby()

void OnJoinedLobby ()

Called on entering a lobby on the Master Server. The actual room-list updates will call OnRoomListUpdate.

While in the lobby, the roomlist is automatically updated in fixed intervals (which you can't modify in the public cloud).
The room list gets available via OnRoomListUpdate.

Implements ILobbyCallbacks.

8.120.2.11 OnJoinedRoom()

void OnJoinedRoom ()

Called when the LoadBalancingClient entered a room, no matter if this client created it or simply joined.

When this is called, you can access the existing players in Room.Players, their custom properties and
Room.CustomProperties.

In this callback, you could create player objects. For example in Unity, instantiate a prefab for the player.

If you want a match to be started "actively", enable the user to signal "ready" (using OpRaiseEvent or a Custom
Property).

Implements IMatchmakingCallbacks.

8.120.2.12 OnJoinRandomFailed()

void OnJoinRandomFailed (

short returnCode,

string message)

Called when a previous OpJoinRandom call failed on the server.

The most common causes are that a room is full or does not exist (due to someone else being faster or closing the
room).

This operation is only ever sent to the Master Server. Once a room is found by the Master Server, the client will
head off to the designated Game Server and use the operation Join on the Game Server.

When using multiple lobbies (via OpJoinLobby or a TypedLobby parameter), another lobby might have more/fitting
rooms.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Generated by Doxygen

406 Class Documentation

Implements IMatchmakingCallbacks.

8.120.2.13 OnJoinRoomFailed()

void OnJoinRoomFailed (

short returnCode,

string message)

Called when a previous OpJoinRoom call failed on the server.

Joining a room may fail for various reasons. Most often, the room is full or does not exist anymore (due to someone
else being faster or closing the room).

When joining a room fails on a Game Server: The client will cache the failure internally and returns to the Master
Server before it calls the fail-callback. This way, the client is ready to find/create a room at the moment of the
callback. In this case, the client skips calling OnConnectedToMaster but returning to the Master Server will still call
OnConnected. Treat callbacks of OnConnected as pure information that the client could connect.

Parameters

returnCode Operation ReturnCode from the server.

message Debug message for the error.

Implements IMatchmakingCallbacks.

8.120.2.14 OnLeftLobby()

void OnLeftLobby ()

Called after leaving a lobby.

When you leave a lobby, OpCreateRoom and OpJoinRandomRoom automatically refer to the default lobby.

Implements ILobbyCallbacks.

8.120.2.15 OnLeftRoom()

void OnLeftRoom ()

Called when the local user/client left a room, so the game's logic can clean up it's internal state.

When leaving a room, the LoadBalancingClient will disconnect the Game Server and connect to the Master Server.
This wraps up multiple internal actions.

Wait for the callback OnConnectedToMaster, before you use lobbies and join or create rooms.

Implements IMatchmakingCallbacks.

Generated by Doxygen

8.120 SupportLogger Class Reference 407

8.120.2.16 OnLobbyStatisticsUpdate()

void OnLobbyStatisticsUpdate (

List< TypedLobbyInfo > lobbyStatistics)

Called when the Master Server sent an update for the Lobby Statistics.

This callback has two preconditions: EnableLobbyStatistics must be set to true, before this client connects. And the
client has to be connected to the Master Server, which is providing the info about lobbies.

Implements ILobbyCallbacks.

8.120.2.17 OnMasterClientSwitched()

void OnMasterClientSwitched (

Player newMasterClient)

Called after switching to a new MasterClient when the current one leaves.

This is not called when this client enters a room. The former MasterClient is still in the player list when this method
get called.

Implements IInRoomCallbacks.

8.120.2.18 OnPlayerEnteredRoom()

void OnPlayerEnteredRoom (

Player newPlayer)

Called when a remote player entered the room. This Player is already added to the playerlist.

If your game starts with a certain number of players, this callback can be useful to check the Room.playerCount and
find out if you can start.

Implements IInRoomCallbacks.

8.120.2.19 OnPlayerLeftRoom()

void OnPlayerLeftRoom (

Player otherPlayer)

Called when a remote player left the room or became inactive. Check otherPlayer.IsInactive.

If another player leaves the room or if the server detects a lost connection, this callback will be used to notify your
game logic.

Depending on the room's setup, players may become inactive, which means they may return and retake their spot
in the room. In such cases, the Player stays in the Room.Players dictionary.

If the player is not just inactive, it gets removed from the Room.Players dictionary, before the callback is called.

Implements IInRoomCallbacks.

Generated by Doxygen

408 Class Documentation

8.120.2.20 OnPlayerPropertiesUpdate()

void OnPlayerPropertiesUpdate (

Player targetPlayer,

Hashtable changedProps)

Called when custom player-properties are changed. Player and the changed properties are passed as object[].

Changing properties must be done by Player.SetCustomProperties, which causes this callback locally, too.

Parameters

targetPlayer Contains Player that changed.

changedProps Contains the properties that changed.

Implements IInRoomCallbacks.

8.120.2.21 OnRegionListReceived()

void OnRegionListReceived (

RegionHandler regionHandler)

Called when the Name Server provided a list of regions for your title.

Check the RegionHandler class description, to make use of the provided values.

Parameters

regionHandler The currently used RegionHandler.

Implements IConnectionCallbacks.

8.120.2.22 OnRoomListUpdate()

void OnRoomListUpdate (

List< RoomInfo > roomList)

Called for any update of the room-listing while in a lobby (InLobby) on the Master Server.

Each item is a RoomInfo which might include custom properties (provided you defined those as lobby-listed when
creating a room). Not all types of lobbies provide a listing of rooms to the client. Some are silent and specialized for
server-side matchmaking.

Implements ILobbyCallbacks.

Generated by Doxygen

8.121 PhotonAnimatorView.SynchronizedLayer Class Reference 409

8.120.2.23 OnRoomPropertiesUpdate()

void OnRoomPropertiesUpdate (

Hashtable propertiesThatChanged)

Called when a room's custom properties changed. The propertiesThatChanged contains all that was set via
Room.SetCustomProperties.

Since v1.25 this method has one parameter: Hashtable propertiesThatChanged.
Changing properties must be done by Room.SetCustomProperties, which causes this callback locally, too.

Parameters

propertiesThatChanged

Implements IInRoomCallbacks.

8.120.3 Member Data Documentation

8.120.3.1 LogTrafficStats

bool LogTrafficStats = true

Toggle to enable or disable traffic statistics logging.

8.120.4 Property Documentation

8.120.4.1 Client

LoadBalancingClient Client [get], [set]

Photon client to log information and statistics from.

8.121 PhotonAnimatorView.SynchronizedLayer Class Reference

Public Attributes

• SynchronizeType SynchronizeType
• int LayerIndex

Generated by Doxygen

410 Class Documentation

8.122 PhotonAnimatorView.SynchronizedParameter Class Reference

Public Attributes

• ParameterType Type
• SynchronizeType SynchronizeType
• string Name

8.123 TabViewManager.Tab Class Reference

Public Attributes

• string ID = ""
• Toggle Toggle
• RectTransform View

8.124 TabViewManager.TabChangeEvent Class Reference

Tab change event.

Inherits UnityEvent< string >.

8.124.1 Detailed Description

Tab change event.

8.125 TabViewManager Class Reference

Tab view manager. Handles Tab views activation and deactivation, and provides a Unity Event Callback when a tab
was selected.

Inherits MonoBehaviour.

Classes

• class Tab
• class TabChangeEvent

Tab change event.

Public Member Functions

• void SelectTab (string id)

Selects a given tab.

Generated by Doxygen

8.125 TabViewManager Class Reference 411

Public Attributes

• ToggleGroup ToggleGroup

The toggle group component target.

• Tab[] Tabs

all the tabs for this group

• TabChangeEvent OnTabChanged

The on tab changed Event.

Protected Attributes

• Tab CurrentTab

8.125.1 Detailed Description

Tab view manager. Handles Tab views activation and deactivation, and provides a Unity Event Callback when a tab
was selected.

8.125.2 Member Function Documentation

8.125.2.1 SelectTab()

void SelectTab (

string id)

Selects a given tab.

Parameters

id Tab Id

8.125.3 Member Data Documentation

8.125.3.1 OnTabChanged

TabChangeEvent OnTabChanged

The on tab changed Event.

Generated by Doxygen

412 Class Documentation

8.125.3.2 Tabs

Tab [] Tabs

all the tabs for this group

8.125.3.3 ToggleGroup

ToggleGroup ToggleGroup

The toggle group component target.

8.126 TeamExtensions Class Reference

Extension used for PunTeams and Player class. Wraps access to the player's custom property.

Static Public Member Functions

• static PunTeams.Team GetTeam (this Player player)

Extension for Player class to wrap up access to the player's custom property.
• static void SetTeam (this Player player, PunTeams.Team team)

Switch that player's team to the one you assign.

8.126.1 Detailed Description

Extension used for PunTeams and Player class. Wraps access to the player's custom property.

8.126.2 Member Function Documentation

8.126.2.1 GetTeam()

static PunTeams.Team GetTeam (

this Player player) [static]

Extension for Player class to wrap up access to the player's custom property.

Returns

PunTeam.Team.none if no team was found (yet).

8.126.2.2 SetTeam()

static void SetTeam (

this Player player,

PunTeams.Team team) [static]

Switch that player's team to the one you assign.

Internally checks if this player is in that team already or not. Only team switches are actually sent.

Generated by Doxygen

8.127 TextButtonTransition Class Reference 413

Parameters

player

team

8.127 TextButtonTransition Class Reference

Use this on Button texts to have some color transition on the text as well without corrupting button's behaviour.

Inherits MonoBehaviour, IPointerEnterHandler, and IPointerExitHandler.

Public Member Functions

• void Awake ()
• void OnEnable ()
• void OnDisable ()
• void OnPointerEnter (PointerEventData eventData)
• void OnPointerExit (PointerEventData eventData)

Public Attributes

• Selectable Selectable

The selectable Component.

• Color NormalColor = Color.white

The color of the normal of the transition state.

• Color HoverColor = Color.black

The color of the hover of the transition state.

8.127.1 Detailed Description

Use this on Button texts to have some color transition on the text as well without corrupting button's behaviour.

8.127.2 Member Data Documentation

8.127.2.1 HoverColor

Color HoverColor = Color.black

The color of the hover of the transition state.

Generated by Doxygen

414 Class Documentation

8.127.2.2 NormalColor

Color NormalColor = Color.white

The color of the normal of the transition state.

8.127.2.3 Selectable

Selectable Selectable

The selectable Component.

8.128 TextToggleIsOnTransition Class Reference

Use this on toggles texts to have some color transition on the text depending on the isOn State.

Inherits MonoBehaviour, IPointerEnterHandler, and IPointerExitHandler.

Public Member Functions

• void OnEnable ()
• void OnDisable ()
• void OnValueChanged (bool isOn)
• void OnPointerEnter (PointerEventData eventData)
• void OnPointerExit (PointerEventData eventData)

Public Attributes

• Toggle toggle

The toggle Component.

• Color NormalOnColor = Color.white

The color of the normal on transition state.

• Color NormalOffColor = Color.black

The color of the normal off transition state.

• Color HoverOnColor = Color.black

The color of the hover on transition state.

• Color HoverOffColor = Color.black

The color of the hover off transition state.

8.128.1 Detailed Description

Use this on toggles texts to have some color transition on the text depending on the isOn State.

Generated by Doxygen

8.128 TextToggleIsOnTransition Class Reference 415

8.128.2 Member Data Documentation

8.128.2.1 HoverOffColor

Color HoverOffColor = Color.black

The color of the hover off transition state.

8.128.2.2 HoverOnColor

Color HoverOnColor = Color.black

The color of the hover on transition state.

8.128.2.3 NormalOffColor

Color NormalOffColor = Color.black

The color of the normal off transition state.

8.128.2.4 NormalOnColor

Color NormalOnColor = Color.white

The color of the normal on transition state.

8.128.2.5 toggle

Toggle toggle

The toggle Component.

Generated by Doxygen

416 Class Documentation

8.129 TurnExtensions Class Reference

Static Public Member Functions

• static void SetTurn (this Room room, int turn, bool setStartTime=false)

Sets the turn.

• static int GetTurn (this RoomInfo room)

Gets the current turn from a RoomInfo

• static int GetTurnStart (this RoomInfo room)

Returns the start time when the turn began. This can be used to calculate how long it's going on.

• static int GetFinishedTurn (this Player player)

gets the player's finished turn (from the ROOM properties)

• static void SetFinishedTurn (this Player player, int turn)

Sets the player's finished turn (in the ROOM properties)

Static Public Attributes

• static readonly string TurnPropKey = "Turn"

currently ongoing turn number

• static readonly string TurnStartPropKey = "TStart"

start (server) time for currently ongoing turn (used to calculate end)

• static readonly string FinishedTurnPropKey = "FToA"

Finished Turn of Actor (followed by number)

8.129.1 Member Function Documentation

8.129.1.1 GetFinishedTurn()

static int GetFinishedTurn (

this Player player) [static]

gets the player's finished turn (from the ROOM properties)

Returns

The finished turn index

Parameters

player Player reference

Generated by Doxygen

8.129 TurnExtensions Class Reference 417

8.129.1.2 GetTurn()

static int GetTurn (

this RoomInfo room) [static]

Gets the current turn from a RoomInfo

Returns

The turn index

Parameters

room RoomInfo reference

8.129.1.3 GetTurnStart()

static int GetTurnStart (

this RoomInfo room) [static]

Returns the start time when the turn began. This can be used to calculate how long it's going on.

Returns

The turn start.

Parameters

room Room.

8.129.1.4 SetFinishedTurn()

static void SetFinishedTurn (

this Player player,

int turn) [static]

Sets the player's finished turn (in the ROOM properties)

Parameters

player Player Reference

turn Turn Index

Generated by Doxygen

418 Class Documentation

8.129.1.5 SetTurn()

static void SetTurn (

this Room room,

int turn,

bool setStartTime = false) [static]

Sets the turn.

Parameters

room Room reference
turn Turn index
setStartTime If set to true set start time.

8.129.2 Member Data Documentation

8.129.2.1 FinishedTurnPropKey

readonly string FinishedTurnPropKey = "FToA" [static]

Finished Turn of Actor (followed by number)

8.129.2.2 TurnPropKey

readonly string TurnPropKey = "Turn" [static]

currently ongoing turn number

8.129.2.3 TurnStartPropKey

readonly string TurnStartPropKey = "TStart" [static]

start (server) time for currently ongoing turn (used to calculate end)

8.130 TypedLobby Class Reference

Refers to a specific lobby on the server.

Inherited by TypedLobbyInfo.

Generated by Doxygen

8.130 TypedLobby Class Reference 419

Public Member Functions

• TypedLobby (string name, LobbyType type)

Sets Name and Type of the new instance. Make sure name is not empty or null, as that always points to the "default
lobby" (TypedLobby.Default).

• override string ToString ()

Public Attributes

• string Name

Name of the lobby. Default: null, pointing to the "default lobby".

• LobbyType Type

Type (and behaviour) of the lobby.

Static Public Attributes

• static readonly TypedLobby Default = new TypedLobby()

A reference to the default lobby which is the unique lobby that uses null as name and is of type LobbyType.Default.

Properties

• bool IsDefault [get]

Returns whether or not this instance points to the "default lobby" (TypedLobby.Default).

8.130.1 Detailed Description

Refers to a specific lobby on the server.

Name and Type combined are the unique identifier for a lobby.
The server will create lobbies "on demand", so no registration or setup is required.
An empty or null Name always points to the "default lobby" as special case.

8.130.2 Constructor & Destructor Documentation

8.130.2.1 TypedLobby()

TypedLobby (

string name,

LobbyType type)

Sets Name and Type of the new instance. Make sure name is not empty or null, as that always points to the "default
lobby" (TypedLobby.Default).

Generated by Doxygen

420 Class Documentation

Parameters

name Some string to identify a lobby.

type The type of a lobby defines it's capabilities and behaviour.

8.130.3 Member Data Documentation

8.130.3.1 Default

readonly TypedLobby Default = new TypedLobby() [static]

A reference to the default lobby which is the unique lobby that uses null as name and is of type LobbyType.Default.

There is only a single lobby with an empty name on the server. It is always of type LobbyType.Default.
On the other hand, this is a shortcut and reusable reference to the default lobby.
Do not change Name or Type.

8.130.3.2 Name

string Name

Name of the lobby. Default: null, pointing to the "default lobby".

If Name is null or empty, a TypedLobby will point to the "default lobby". This ignores the Type value and always acts
as LobbyType.Default.

8.130.3.3 Type

LobbyType Type

Type (and behaviour) of the lobby.

An empty or null Name always points to the "default lobby" as special case.

8.130.4 Property Documentation

8.130.4.1 IsDefault

bool IsDefault [get]

Returns whether or not this instance points to the "default lobby" (TypedLobby.Default).

This comes up to checking if the Name is null or empty. LobbyType.Default is not the same thing as the "default
lobby" (TypedLobby.Default).

Generated by Doxygen

8.131 TypedLobbyInfo Class Reference 421

8.131 TypedLobbyInfo Class Reference

Info for a lobby on the server. Used when LoadBalancingClient.EnableLobbyStatistics is true.

Inherits TypedLobby.

Public Member Functions

• override string ToString ()

Public Attributes

• int PlayerCount

Count of players that currently joined this lobby.

• int RoomCount

Count of rooms currently associated with this lobby.

Additional Inherited Members

8.131.1 Detailed Description

Info for a lobby on the server. Used when LoadBalancingClient.EnableLobbyStatistics is true.

8.131.2 Member Data Documentation

8.131.2.1 PlayerCount

int PlayerCount

Count of players that currently joined this lobby.

8.131.2.2 RoomCount

int RoomCount

Count of rooms currently associated with this lobby.

8.132 WebFlags Class Reference

Optional flags to be used in Photon client SDKs with Op RaiseEvent and Op SetProperties. Introduced mainly for
webhooks 1.2 to control behavior of forwarded HTTP requests.

Generated by Doxygen

422 Class Documentation

Public Member Functions

• WebFlags (byte webhookFlags)

Public Attributes

• byte WebhookFlags

Static Public Attributes

• static readonly WebFlags Default = new WebFlags(0)
• const byte HttpForwardConst = 0x01
• const byte SendAuthCookieConst = 0x02
• const byte SendSyncConst = 0x04
• const byte SendStateConst = 0x08

Properties

• bool HttpForward [get, set]

Indicates whether to forward HTTP request to web service or not.

• bool SendAuthCookie [get, set]

Indicates whether to send AuthCookie of actor in the HTTP request to web service or not.

• bool SendSync [get, set]

Indicates whether to send HTTP request synchronously or asynchronously to web service.

• bool SendState [get, set]

Indicates whether to send serialized game state in HTTP request to web service or not.

8.132.1 Detailed Description

Optional flags to be used in Photon client SDKs with Op RaiseEvent and Op SetProperties. Introduced mainly for
webhooks 1.2 to control behavior of forwarded HTTP requests.

8.132.2 Property Documentation

8.132.2.1 HttpForward

bool HttpForward [get], [set]

Indicates whether to forward HTTP request to web service or not.

Generated by Doxygen

8.133 WebRpcResponse Class Reference 423

8.132.2.2 SendAuthCookie

bool SendAuthCookie [get], [set]

Indicates whether to send AuthCookie of actor in the HTTP request to web service or not.

8.132.2.3 SendState

bool SendState [get], [set]

Indicates whether to send serialized game state in HTTP request to web service or not.

8.132.2.4 SendSync

bool SendSync [get], [set]

Indicates whether to send HTTP request synchronously or asynchronously to web service.

8.133 WebRpcResponse Class Reference

Reads an operation response of a WebRpc and provides convenient access to most common values.

Public Member Functions

• WebRpcResponse (OperationResponse response)

An OperationResponse for a WebRpc is needed to read it's values.

• string ToStringFull ()

Turns the response into an easier to read string.

Properties

• string Name [get]

Name of the WebRpc that was called.

• int ResultCode [get]

ResultCode of the WebService that answered the WebRpc.

• int ReturnCode [get]
• string Message [get]

Might be empty or null.

• string DebugMessage [get]
• Dictionary< string, object > Parameters [get]

Other key/values returned by the webservice that answered the WebRpc.

Generated by Doxygen

424 Class Documentation

8.133.1 Detailed Description

Reads an operation response of a WebRpc and provides convenient access to most common values.

See LoadBalancingClient.OpWebRpc.
Create a WebRpcResponse to access common result values.
The operationResponse.OperationCode should be: OperationCode.WebRpc.

8.133.2 Constructor & Destructor Documentation

8.133.2.1 WebRpcResponse()

WebRpcResponse (

OperationResponse response)

An OperationResponse for a WebRpc is needed to read it's values.

8.133.3 Member Function Documentation

8.133.3.1 ToStringFull()

string ToStringFull ()

Turns the response into an easier to read string.

Returns

String resembling the result.

8.133.4 Property Documentation

8.133.4.1 Message

string Message [get]

Might be empty or null.

Generated by Doxygen

8.133 WebRpcResponse Class Reference 425

8.133.4.2 Name

string Name [get]

Name of the WebRpc that was called.

8.133.4.3 Parameters

Dictionary<string, object> Parameters [get]

Other key/values returned by the webservice that answered the WebRpc.

8.133.4.4 ResultCode

int ResultCode [get]

ResultCode of the WebService that answered the WebRpc.

0 is: "OK" for WebRPCs.
-1 is: No ResultCode by WebRpc service (check OperationResponse.ReturnCode).
Other ResultCode are defined by the individual WebRpc and service.

Generated by Doxygen

426 Class Documentation

Generated by Doxygen

Index

Actor
Photon.Realtime, 31

ActorList
ParameterCode, 238

ActorNr
ParameterCode, 238

ActorNumber
Player, 352

ActorProperties, 33
IsInactive, 33
PlayerName, 33
UserId, 34

Add
ChatChannel, 60
ParameterCode, 238

AddAuthParameter
AuthenticationValues, 41, 46

AddCallback< T >
PhotonView, 340

AddCallbackTarget
LoadBalancingClient, 167
PhotonNetwork, 270
PhotonView, 341

AddChild
CellTreeNode, 52

AddFriends
ChatClient, 66
ChatOperationCode, 83

AddPlayer
Room, 378

Address
ParameterCode, 233, 239

AddToRoomCache
Photon.Realtime, 29

AddToRoomCacheGlobal
Photon.Realtime, 29

All
Photon.Realtime, 31
Public API, 13

AllBuffered
Public API, 13

AllBufferedViaServer
Public API, 13

AllocateRoomViewID
PhotonNetwork, 270

AllocateViewID
PhotonNetwork, 270, 271

AllViaServer
Public API, 13

AlmostEquals
PunExtensions, 360

AppId
ChatAppSettings, 58
ChatClient, 76
LoadBalancingClient, 184

AppIdChat
AppSettings, 36
ChatAppSettings, 56

AppIdFusion
AppSettings, 36

AppIdRealtime
AppSettings, 36

AppIdVoice
AppSettings, 36

ApplicationId
ParameterCode, 233, 239

ApplyDontDestroyOnLoad
ConnectionHandler, 101

AppQuits
ConnectionHandler, 101

AppSettings, 34
AppIdChat, 36
AppIdFusion, 36
AppIdRealtime, 36
AppIdVoice, 36
AppVersion, 37
AuthMode, 37
BestRegionSummaryFromStorage, 37
EnableLobbyStatistics, 37
EnableProtocolFallback, 37
FixedRegion, 38
IsAppId, 35
IsBestRegion, 39
IsDefaultNameServer, 39
IsDefaultPort, 39
IsMasterServerAddress, 39
NetworkLogging, 38
Port, 38
Protocol, 38
ProxyServer, 38
Server, 38
ToStringFull, 36
UseNameServer, 39

AppStats
EventCode, 123

AppVersion
AppSettings, 37
ChatAppSettings, 56

428 INDEX

ChatClient, 77
LoadBalancingClient, 184
ParameterCode, 234, 239
PhotonNetwork, 299

AsyncRandomLobby
Photon.Realtime, 30

Authenticate
ChatOperationCode, 83
OperationCode, 228

Authenticated
Photon.Chat, 19
Public API, 12

AuthenticateOnce
OperationCode, 228

AuthenticateOnNameServer
ChatPeer, 91

Authenticating
Photon.Chat, 19
Public API, 12

AuthenticationTicketExpired
ErrorCode, 112, 119
Photon.Chat, 18
Photon.Realtime, 28

AuthenticationValues, 40, 44
AddAuthParameter, 41, 46
AuthenticationValues, 41, 45
AuthGetParameters, 43, 48
AuthPostData, 43, 48
AuthType, 43, 48
CopyTo, 41, 46
SetAuthPostData, 42, 46, 47
Token, 44, 48
ToString, 43, 47
UserId, 44, 48

AuthEvent
EventCode, 124

AuthGetParameters
AuthenticationValues, 43, 48

AuthMode
AppSettings, 37
LoadBalancingClient, 182

AuthModeOption
Photon.Realtime, 26

AuthPostData
AuthenticationValues, 43, 48

AuthType
AuthenticationValues, 43, 48

AuthValues
ChatClient, 77
LoadBalancingClient, 184
PhotonNetwork, 299

AutoCleanUp
Room, 382

autoCleanUp
RoomInfo, 388

AutoConnect
ConnectAndJoinRandom, 96

AutomaticallySyncScene

PhotonNetwork, 299
Away

ChatUserStatus, 93
AzureLocalNodeId

ParameterCode, 239
AzureMasterNodeId

ParameterCode, 239
AzureNodeInfo

EventCode, 124
ParameterCode, 239

BeginTurn
PunTurnManager, 365

BestRegion
RegionHandler, 372

BestRegionSummaryFromStorage
AppSettings, 37

BestRegionSummaryInPreferences
PhotonNetwork, 299
ServerSettings, 397

Broadcast
ChatParameterCode, 86
ParameterCode, 240

BroadcastPropertiesChangeToAll
Room, 382

BroadcastPropsChangeToAll
RoomOptions, 393

ButtonInsideScrollList, 49
buttonsOn

PhotonStatsGui, 314
ByteComparer, 49

Cache
ParameterCode, 240

CacheDiscreteTriggers
PhotonAnimatorView, 251

CacheSliceChanged
EventCode, 124

CacheSliceIndex
ParameterCode, 240

CachingOption
RaiseEventOptions, 369

Callbacks, 16
CanChat

ChatClient, 77
CanChatInChannel

ChatClient, 66
CellTree, 49

CellTree, 50
RootNode, 50

CellTreeNode, 50
AddChild, 52
CellTreeNode, 51
Center, 53
Childs, 53
Draw, 52
GetActiveCells, 52
Id, 54
IsPointInsideCell, 53

Generated by Doxygen

INDEX 429

IsPointNearCell, 53
NodeType, 54
Parent, 54

Center
CellTreeNode, 53

ChangeGroups
OperationCode, 228

ChangeLocalID
LoadBalancingClient, 167

Channel
ChatParameterCode, 86

ChannelCreationOptions, 54
Default, 54
MaxSubscribers, 55
PublishSubscribers, 55

ChannelHistory
ChatOperationCode, 83

ChannelID
ChatChannel, 61

Channels
ChatParameterCode, 86

ChannelSubscribers
ChatParameterCode, 86

ChannelUserCount
ChatParameterCode, 86

ChannelWellKnownProperties, 55
ChatAppSettings, 55

AppId, 58
AppIdChat, 56
AppVersion, 56
EnableProtocolFallback, 57
FixedRegion, 57
IsDefaultNameServer, 58
NetworkLogging, 57
Port, 57
Protocol, 57
Server, 57

ChatChannel, 58
Add, 60
ChannelID, 61
ChatChannel, 59
ClearMessages, 60
IsPrivate, 62
LastMsgId, 62
MaxSubscribers, 62
MessageCount, 62
MessageLimit, 61
Messages, 61
Name, 61
PublishSubscribers, 62
Senders, 61
Subscribers, 62
ToStringMessages, 60
TruncateMessages, 60

ChatClient, 63
AddFriends, 66
AppId, 76
AppVersion, 77

AuthValues, 77
CanChat, 77
CanChatInChannel, 66
ChatClient, 65
chatPeer, 75
ChatRegion, 77
Connect, 67
ConnectAndSetStatus, 67
DebugOut, 77
DefaultMaxSubscribers, 75
Disconnect, 68
DisconnectedCause, 77
EnableProtocolFallback, 78
FrontendAddress, 78
GetPrivateChannelNameByUser, 68
MessageLimit, 76
NameServerAddress, 78
PrivateChannels, 76
PrivateChatHistoryLength, 76
PublicChannels, 76
PublishMessage, 68
RemoveFriends, 69
SendAcksOnly, 69
SendPrivateMessage, 69, 70
Service, 70
SetOnlineStatus, 71
SocketImplementationConfig, 78
State, 78
StopThread, 72
Subscribe, 72, 73
TransportProtocol, 79
TryGetChannel, 73, 74
TryGetPrivateChannelByUser, 74
Unsubscribe, 75
UseBackgroundWorkerForSending, 79
UserId, 79

ChatDisconnectCause
Photon.Chat, 18

ChatEventCode, 79
ChatMessages, 80
ErrorInfo, 80
FriendsList, 80
PrivateMessage, 81
PropertiesChanged, 81
StatusUpdate, 81
Subscribe, 81
Unsubscribe, 81
Users, 81
UserSubscribed, 82
UserUnsubscribed, 82

ChatMessages
ChatEventCode, 80

ChatOperationCode, 82
AddFriends, 83
Authenticate, 83
ChannelHistory, 83
Publish, 83
RemoveFriends, 83

Generated by Doxygen

430 INDEX

SendPrivate, 83
SetProperties, 84
Subscribe, 84
Unsubscribe, 84
UpdateStatus, 84

ChatParameterCode, 84
Broadcast, 86
Channel, 86
Channels, 86
ChannelSubscribers, 86
ChannelUserCount, 86
DebugData, 86
ExpectedValues, 87
Friends, 87
HistoryLength, 87
Message, 87
Messages, 87
MsgId, 87
MsgIds, 88
Properties, 88
Secret, 88
Sender, 88
Senders, 88
SkipMessage, 88
Status, 89
SubscribeResults, 89
UniqueRoomId, 89
UserId, 89
UserProperties, 89
WebFlags, 89

ChatPeer, 90
AuthenticateOnNameServer, 91
ChatPeer, 90
Connect, 91
NameServerAddress, 92
NameServerHost, 91
NameServerPortOverride, 91

chatPeer
ChatClient, 75

ChatRegion
ChatClient, 77

ChatState
Photon.Chat, 19

ChatUserStatus, 92
Away, 93
DND, 93
Invisible, 93
LFG, 93
Offline, 93
Online, 93
Playing, 94

CheckUserOnJoin
ParameterCode, 240

Childs
CellTreeNode, 53

CleanupCacheOnLeave
GamePropertyKey, 133
ParameterCode, 240

RoomOptions, 393
ClearExpectedUsers

Room, 378
ClearMessages

ChatChannel, 60
Client

ConnectionHandler, 101
SupportLogger, 409

ClientAppType
Photon.Realtime, 26

ClientAuthenticationData
ParameterCode, 234, 240

ClientAuthenticationParams
ParameterCode, 234, 241

ClientAuthenticationType
ParameterCode, 234, 241

ClientState
Public API, 12

ClientTimeout
Photon.Chat, 18
Photon.Realtime, 28

ClientType
LoadBalancingClient, 184

CloseConnection
PhotonNetwork, 271

CloudRegion
LoadBalancingClient, 184
PhotonNetwork, 300

Cluster
ParameterCode, 241
Region, 371

Code
ParameterCode, 241

Connect
ChatClient, 67
ChatPeer, 91

ConnectAndJoinRandom, 94
AutoConnect, 96
MaxPlayers, 96
OnConnectedToMaster, 95
OnDisconnected, 95
OnJoinedLobby, 95
OnJoinedRoom, 95
OnJoinRandomFailed, 96
Version, 97

ConnectAndSetStatus
ChatClient, 67

ConnectedToFrontEnd
Photon.Chat, 19

ConnectedToGameServer
Public API, 12

ConnectedToMasterServer
Public API, 12

ConnectedToNameServer
Photon.Chat, 19
Public API, 12

ConnectingToFrontEnd
Photon.Chat, 19

Generated by Doxygen

INDEX 431

ConnectingToGameServer
Public API, 12

ConnectingToMasterServer
Public API, 12

ConnectingToNameServer
Photon.Chat, 19
Public API, 12

ConnectionCallbacksContainer, 97
OnConnected, 97
OnConnectedToMaster, 98
OnCustomAuthenticationFailed, 98
OnCustomAuthenticationResponse, 99
OnDisconnected, 99
OnRegionListReceived, 99

ConnectionCallbackTargets
LoadBalancingClient, 182

ConnectionHandler, 100
ApplyDontDestroyOnLoad, 101
AppQuits, 101
Client, 101
CountSendAcksOnly, 102
DisconnectAfterKeepAlive, 101
FallbackThreadRunning, 102
KeepAliveInBackground, 101
RealtimeFallbackThread, 100

ConnectMethod
Photon.Pun, 21
PhotonNetwork, 296

ConnectToBestCloudServer
PhotonNetwork, 272

ConnectToMaster
PhotonNetwork, 272

ConnectToMasterServer
LoadBalancingClient, 168

ConnectToNameServer
LoadBalancingClient, 168

ConnectToRegion
PhotonNetwork, 273

ConnectToRegionMaster
LoadBalancingClient, 168

ConnectUsingSettings
PhotonNetwork, 273

ConnectWithFallbackProtocol
Photon.Chat, 19
Public API, 12

Contains
Extensions, 127

CopyTo
AuthenticationValues, 41, 46

Count
PhotonStream, 319

CountdownTimer, 102
CountdownTimerHasExpired, 103
OnCountdownTimerHasExpired, 104
OnRoomPropertiesUpdate, 103

CountdownTimerHasExpired
CountdownTimer, 103

CountOfPlayers

PhotonNetwork, 300
CountOfPlayersInRooms

PhotonNetwork, 300
CountOfPlayersOnMaster

PhotonNetwork, 300
CountOfRooms

PhotonNetwork, 300
CountSendAcksOnly

ConnectionHandler, 102
CrcCheckEnabled

PhotonNetwork, 300
CreatedOnGs

FindFriendsOptions, 131
CreateGame

OperationCode, 228
CreateIfNotExists

Photon.Realtime, 30
CreateRoom

PhotonNetwork, 273
CullArea, 104

FIRST_GROUP_ID, 105
GetActiveCells, 105
OnDrawGizmos, 105
SUBDIVISION_FIRST_LEVEL_ORDER, 106
SUBDIVISION_SECOND_LEVEL_ORDER, 106
SUBDIVISION_THIRD_LEVEL_ORDER, 106

CullingHandler, 107
OnPhotonSerializeView, 107

CurrentCluster
LoadBalancingClient, 185
PhotonNetwork, 301

CurrentLobby
LoadBalancingClient, 185
PhotonNetwork, 301

CurrentRoom
LoadBalancingClient, 185
PhotonNetwork, 301

CurrentServerAddress
LoadBalancingClient, 185

Custom
Photon.Chat, 19
Photon.Realtime, 27

CustomAuthenticationFailed
ErrorCode, 112, 119
Photon.Chat, 18
Photon.Realtime, 28

CustomAuthenticationType
Photon.Chat, 19
Photon.Realtime, 27

CustomEventContent
ParameterCode, 241

CustomInitData
ParameterCode, 241

CustomProperties
Player, 352
RoomInfo, 390

CustomRoomProperties
RoomOptions, 392

Generated by Doxygen

432 INDEX

CustomRoomPropertiesForLobby
RoomOptions, 392

Data
ParameterCode, 242

DatagramEncryption
Photon.Realtime, 28

DatagramEncryptionGCM
Photon.Realtime, 29

DatagramEncryptionRandomSequence
Photon.Realtime, 29

DebugData
ChatParameterCode, 86

DebugOut
ChatClient, 77

DebugReturn
IChatClientListener, 137
LoadBalancingClient, 168

Default
ChannelCreationOptions, 54
Photon.Realtime, 30
RaiseEventOptions, 370
TypedLobby, 420

DefaultMaxSubscribers
ChatClient, 75

DefaultPool, 107
Destroy, 108
Instantiate, 108
ResourceCache, 109

DeleteNullProperties
Room, 382
RoomOptions, 393

Deserialize
PhotonStreamQueue, 320

DespawnObjects
OnJoinedInstantiate, 222

Destroy
DefaultPool, 108
IPunPrefabPool, 158
PhotonNetwork, 274, 275

DestroyAll
PhotonNetwork, 275

DestroyPlayerObjects
PhotonNetwork, 276

DevRegion
ServerSettings, 397

Disconnect
ChatClient, 68
LoadBalancingClient, 169
PhotonNetwork, 277

DisconnectAfterKeepAlive
ConnectionHandler, 101

DisconnectByClientLogic
Photon.Chat, 18
Photon.Realtime, 28

DisconnectByDisconnectMessage
Photon.Realtime, 28

DisconnectByOperationLimit
Photon.Realtime, 28

DisconnectByServerLogic
Photon.Chat, 18
Photon.Realtime, 28

DisconnectByServerReasonUnknown
Photon.Chat, 18
Photon.Realtime, 28

DisconnectCause
Photon.Realtime, 27

Disconnected
Photon.Chat, 19
Public API, 12

DisconnectedCause
ChatClient, 77
LoadBalancingClient, 185

Disconnecting
Photon.Chat, 19
Public API, 12

DisconnectingFromFrontEnd
Photon.Chat, 19

DisconnectingFromGameServer
Public API, 12

DisconnectingFromMasterServer
Public API, 12

DisconnectingFromNameServer
Photon.Chat, 19
Public API, 12

Dispatch
PhotonHandler, 256

DND
ChatUserStatus, 93

DnsExceptionOnConnect
Photon.Realtime, 27

DoesLayerSynchronizeTypeExist
PhotonAnimatorView, 251

DoesParameterSynchronizeTypeExist
PhotonAnimatorView, 251

DoNotCache
Photon.Realtime, 29

dontDestroyOnLoad
PlayerNumbering, 357

Draw
CellTreeNode, 52

ElapsedTimeInTurn
PunTurnManager, 368

EmptyRoomTTL
ParameterCode, 242

EmptyRoomTtl
GamePropertyKey, 133
Room, 382
RoomOptions, 392

emptyRoomTtl
RoomInfo, 388

EnableCloseConnection
PhotonNetwork, 296

EnabledRegions
RegionHandler, 373

EnableLobbyStatistics
AppSettings, 37

Generated by Doxygen

INDEX 433

LoadBalancingClient, 182
PhotonNetwork, 301

EnableProtocolFallback
AppSettings, 37
ChatAppSettings, 57
ChatClient, 78
LoadBalancingClient, 185

EncryptionData
ParameterCode, 242

EncryptionMode
LoadBalancingClient, 182
ParameterCode, 242
Photon.Realtime, 28

EnterRoomParams, 109
ExpectedUsers, 109
Lobby, 110
PlayerProperties, 110
RoomName, 110
RoomOptions, 110

Equals
Player, 349
RoomInfo, 387

ErrorCode, 110, 118
AuthenticationTicketExpired, 112, 119
CustomAuthenticationFailed, 112, 119
ExternalHttpCallFailed, 112
GameClosed, 113, 119
GameDoesNotExist, 113, 119
GameFull, 113, 119
GameIdAlreadyExists, 113, 119
HttpLimitReached, 113
InternalServerError, 113, 120
InvalidAuthentication, 114, 120
InvalidEncryptionParameters, 114
InvalidOperation, 114
InvalidOperationCode, 114, 120
InvalidRegion, 114, 120
JoinFailedFoundActiveJoiner, 115
JoinFailedFoundExcludedUserId, 115
JoinFailedFoundInactiveJoiner, 115
JoinFailedPeerAlreadyJoined, 115
JoinFailedWithRejoinerNotFound, 115
MaxCcuReached, 116, 120
NoRandomMatchFound, 116, 121
Ok, 116, 121
OperationLimitReached, 116
OperationNotAllowedInCurrentState, 116, 121
PluginMismatch, 117
PluginReportedError, 117
ServerFull, 117, 121
SlotError, 117
UserBlocked, 117, 121

ErrorInfo, 122
ChatEventCode, 80
EventCode, 124
Info, 122

ErrorsOnly
Public API, 13

EventCaching
Photon.Realtime, 29

EventCode, 123
AppStats, 123
AuthEvent, 124
AzureNodeInfo, 124
CacheSliceChanged, 124
ErrorInfo, 124
GameList, 124
GameListUpdate, 125
Join, 125
Leave, 125
LobbyStats, 125
Match, 125
PropertiesChanged, 125
QueueState, 126
SetProperties, 126

EventForward
ParameterCode, 242

EventReceived
LoadBalancingClient, 190

EventSystemSpawner, 126
EvFinalMove

PunTurnManager, 367
EvMove

PunTurnManager, 367
Exception

Photon.Chat, 18
Photon.Realtime, 28

ExceptionOnConnect
Photon.Chat, 18
Photon.Realtime, 27

ExpectedCustomRoomProperties
OpJoinRandomRoomParams, 231

ExpectedMaxPlayers
OpJoinRandomRoomParams, 232

ExpectedProtocol
LoadBalancingClient, 186
ParameterCode, 242

ExpectedUsers
EnterRoomParams, 109
GamePropertyKey, 134
OpJoinRandomRoomParams, 232
Room, 383

expectedUsers
RoomInfo, 388

ExpectedValues
ChatParameterCode, 87
ParameterCode, 243

Extensions, 126
Contains, 127
Merge, 128
MergeStringKeys, 128
StripKeysWithNullValues, 128, 129
StripToStringKeys, 129
ToStringFull, 130
ToStringFull< T >, 130

ExternalHttpCallFailed

Generated by Doxygen

434 INDEX

ErrorCode, 112

Facebook
Photon.Chat, 19
Photon.Realtime, 27

FallbackThreadRunning
ConnectionHandler, 102

FetchServerTimestamp
PhotonNetwork, 277

FillRoom
Photon.Realtime, 30

Find
PhotonView, 341

FindFriends
OperationCode, 228
PhotonNetwork, 277

FindFriendsOptions, 131
CreatedOnGs, 131
Open, 131
ParameterCode, 243
Visible, 132

FindFriendsRequestList
ParameterCode, 243

FindFriendsResponseOnlineList
ParameterCode, 243

FindFriendsResponseRoomIdList
ParameterCode, 243

FindGameObjectsWithComponent
PhotonNetwork, 278

FindObservables
PhotonView, 341

FinishedTurnPropKey
TurnExtensions, 418

FIRST_GROUP_ID
CullArea, 105

Fixed
Photon.Pun, 22

FixedRegion
AppSettings, 38
ChatAppSettings, 57

FixedUpdate
PhotonHandler, 256

Flags
RaiseEventOptions, 370

FriendInfo, 132
Friends

ChatParameterCode, 87
FriendsList

ChatEventCode, 80
FrontendAddress

ChatClient, 78
Full

Public API, 13
Fusion

Photon.Realtime, 27

Game
Photon.Realtime, 31

GameAndActor

Photon.Realtime, 31
GameClosed

ErrorCode, 113, 119
GameCount

ParameterCode, 243
GameDoesNotExist

ErrorCode, 113, 119
GameFull

ErrorCode, 113, 119
GameIdAlreadyExists

ErrorCode, 113, 119
GameList

EventCode, 124
ParameterCode, 244

GameListUpdate
EventCode, 125

GameProperties
ParameterCode, 244

GamePropertyKey, 132
CleanupCacheOnLeave, 133
EmptyRoomTtl, 133
ExpectedUsers, 134
IsOpen, 134
IsVisible, 134
MasterClientId, 134
MaxPlayers, 134
PlayerCount, 134
PlayerTtl, 135
PropsListedInLobby, 135
Removed, 135

GameServer
Photon.Realtime, 31

GameServerAddress
LoadBalancingClient, 186

GameServerPort
PhotonPortDefinition, 310

GameVersion
PhotonNetwork, 301

Get
Player, 349

GetActiveCells
CellTreeNode, 52
CullArea, 105

GetAvailableTeams
PhotonTeamsManager, 327

GetCustomRoomList
PhotonNetwork, 278

GetExtrapolatedPositionOffset
PhotonTransformViewPositionControl, 335

GetFinishedTurn
TurnExtensions, 416

GetGameList
OperationCode, 228

GetHashCode
Player, 349
RoomInfo, 387

GetLayerSynchronizeType
PhotonAnimatorView, 252

Generated by Doxygen

INDEX 435

GetLobbyStats
OperationCode, 229

GetNestedComponentInParent< T, NestedT >
NestedComponentUtilities, 215

GetNestedComponentInParents< T, NestedT >
NestedComponentUtilities, 215

GetNestedComponentsInChildren< T >
NestedComponentUtilities, 216

GetNestedComponentsInChildren< T, NestedT >
NestedComponentUtilities, 216

GetNestedComponentsInChildren< T, SearchT, Nest-
edT >

NestedComponentUtilities, 217
GetNestedComponentsInParents< T >

NestedComponentUtilities, 217
GetNestedComponentsInParents< T, NestedT >

NestedComponentUtilities, 218
GetNetworkPosition

PhotonTransformViewPositionControl, 335
GetNetworkRotation

PhotonTransformViewRotationControl, 337
GetNetworkScale

PhotonTransformViewScaleControl, 337
GetNext

Player, 349
GetNextFor

Player, 350
GetParameterSynchronizeType

PhotonAnimatorView, 252
GetParentComponent< T >

NestedComponentUtilities, 218
GetPhotonTeam

PhotonTeamExtensions, 323
GetPing

PhotonNetwork, 279
GetPlayer

Room, 378
GetPlayerFinishedTurn

PunTurnManager, 365
GetPlayerNumber

PlayerNumberingExtensions, 358
GetPrivateChannelNameByUser

ChatClient, 68
GetProperties

OperationCode, 229
GetRandomOffset

OnJoinedInstantiate, 222
GetRegions

OperationCode, 229
GetSpawnPoint

OnJoinedInstantiate, 223
GetSynchronizedLayers

PhotonAnimatorView, 252
GetSynchronizedParameters

PhotonAnimatorView, 253
GetTeam

TeamExtensions, 412
GetTeamMembersCount

PhotonTeamsManager, 328
GetTurn

TurnExtensions, 416
GetTurnStart

TurnExtensions, 417
GraphicToggleIsOnTransition, 135
Group

ParameterCode, 244

HasQueuedObjects
PhotonStreamQueue, 321

healthStatsVisible
PhotonStatsGui, 314

HistoryLength
ChatParameterCode, 87

HoverColor
TextButtonTransition, 413

HoverOffColor
TextToggleIsOnTransition, 415

HoverOnColor
TextToggleIsOnTransition, 415

HttpForward
WebFlags, 422

HttpLimitReached
ErrorCode, 113

IChatClientListener, 136
DebugReturn, 137
OnChatStateChange, 137
OnConnected, 137
OnDisconnected, 137
OnGetMessages, 137
OnPrivateMessage, 138
OnStatusUpdate, 138
OnSubscribed, 139
OnUnsubscribed, 139
OnUserSubscribed, 139
OnUserUnsubscribed, 140

IConnectionCallbacks, 140
OnConnected, 141
OnConnectedToMaster, 141
OnCustomAuthenticationFailed, 141
OnCustomAuthenticationResponse, 142
OnDisconnected, 142
OnRegionListReceived, 142

Id
CellTreeNode, 54

IErrorInfoCallback, 143
OnErrorInfo, 143

IInRoomCallbacks, 144
OnMasterClientSwitched, 144
OnPlayerEnteredRoom, 145
OnPlayerLeftRoom, 145
OnPlayerPropertiesUpdate, 145
OnRoomPropertiesUpdate, 146

ILobbyCallbacks, 146
OnJoinedLobby, 147
OnLeftLobby, 147
OnLobbyStatisticsUpdate, 147

Generated by Doxygen

436 INDEX

OnRoomListUpdate, 147
IMatchmakingCallbacks, 148

OnCreatedRoom, 149
OnCreateRoomFailed, 149
OnFriendListUpdate, 149
OnJoinedRoom, 150
OnJoinRandomFailed, 150
OnJoinRoomFailed, 151
OnLeftRoom, 151

Info
ErrorInfo, 122
ParameterCode, 244

Informational
Public API, 13

InLobby
LoadBalancingClient, 186
PhotonNetwork, 302

InRoom
LoadBalancingClient, 186
PhotonNetwork, 302

Instance
PhotonAppSettings, 255

instance
PlayerNumbering, 357

Instantiate
DefaultPool, 108
IPunPrefabPool, 158

InstantiateParameters, 151
InstantiationData

PhotonView, 346
InterestGroup

RaiseEventOptions, 370
InternalServerError

ErrorCode, 113, 120
InvalidAuthentication

ErrorCode, 114, 120
Photon.Chat, 18
Photon.Realtime, 28

InvalidEncryptionParameters
ErrorCode, 114

InvalidOperation
ErrorCode, 114

InvalidOperationCode
ErrorCode, 114, 120

InvalidRegion
ErrorCode, 114, 120
Photon.Chat, 18
Photon.Realtime, 28

Invisible
ChatUserStatus, 93

IOnEventCallback, 152
OnEvent, 152

IOnPhotonViewControllerChange, 153
OnControllerChange, 153

IOnPhotonViewOwnerChange, 153
OnOwnerChange, 154

IOnPhotonViewPreNetDestroy, 154
OnPreNetDestroy, 154

IPhotonViewCallback, 155
IPunInstantiateMagicCallback, 155
IPunObservable, 155
IPunOwnershipCallbacks, 155

OnOwnershipRequest, 156
OnOwnershipTransfered, 156
OnOwnershipTransferFailed, 157

IPunPrefabPool, 157
Destroy, 158
Instantiate, 158

IPunTurnManagerCallbacks, 159
OnPlayerFinished, 159
OnPlayerMove, 160
OnTurnBegins, 160
OnTurnCompleted, 160
OnTurnTimeEnds, 160

IsAppId
AppSettings, 35
ServerSettings, 396

IsBestRegion
AppSettings, 39

IsComingBack
ParameterCode, 244

IsCompletedByAll
PunTurnManager, 368

IsConnected
LoadBalancingClient, 186
PhotonNetwork, 302

IsConnectedAndReady
LoadBalancingClient, 187
PhotonNetwork, 302

IsDefault
TypedLobby, 420

IsDefaultNameServer
AppSettings, 39
ChatAppSettings, 58

IsDefaultPort
AppSettings, 39

IsFetchingFriendList
LoadBalancingClient, 187

IsFinishedByMe
PunTurnManager, 368

IsInactive
ActorProperties, 33
ParameterCode, 244
Player, 353

IsLocal
Player, 352

IsMasterClient
PhotonNetwork, 303
Player, 353

IsMasterServerAddress
AppSettings, 39

IsMessageQueueRunning
PhotonNetwork, 303

IsMine
PhotonView, 346

IsOpen

Generated by Doxygen

INDEX 437

GamePropertyKey, 134
Room, 383
RoomInfo, 390
RoomOptions, 394

isOpen
RoomInfo, 388

IsOver
PunTurnManager, 368

IsPointInsideCell
CellTreeNode, 53

IsPointNearCell
CellTreeNode, 53

IsPrivate
ChatChannel, 62

IsReading
PhotonStream, 319

IsRoomView
PhotonView, 346

IsUsingNameServer
LoadBalancingClient, 187

IsVisible
GamePropertyKey, 134
Room, 383
RoomInfo, 390
RoomOptions, 394

isVisible
RoomInfo, 388

IsWriting
PhotonStream, 319

IWebRpcCallback, 161
OnWebRpcResponse, 161

Join
EventCode, 125
OperationCode, 229

Joined
Public API, 12

JoinedLobby
Public API, 12

JoinFailedFoundActiveJoiner
ErrorCode, 115

JoinFailedFoundExcludedUserId
ErrorCode, 115

JoinFailedFoundInactiveJoiner
ErrorCode, 115

JoinFailedPeerAlreadyJoined
ErrorCode, 115

JoinFailedWithRejoinerNotFound
ErrorCode, 115

JoinGame
OperationCode, 229

Joining
Public API, 12

JoiningLobby
Public API, 12

JoinLobby
OperationCode, 229
PhotonNetwork, 279

JoinMode

ParameterCode, 245
Photon.Realtime, 29

JoinOrCreateRoom
PhotonNetwork, 280

JoinOrRejoin
Photon.Realtime, 30

JoinRandomGame
OperationCode, 230

JoinRandomOrCreateRoom
PhotonNetwork, 281

JoinRandomRoom
PhotonNetwork, 282, 283

JoinRoom
PhotonNetwork, 284

JoinTeam
PhotonTeamExtensions, 323, 324

KeepAliveInBackground
ConnectionHandler, 101
PhotonNetwork, 303

LastMsgId
ChatChannel, 62

LateUpdate
PhotonHandler, 256

Leave
EventCode, 125
OperationCode, 230

LeaveCurrentTeam
PhotonTeamExtensions, 324

LeaveLobby
OperationCode, 230
PhotonNetwork, 284

LeaveRoom
PhotonNetwork, 284

Leaving
Public API, 12

LevelLoadingProgress
PhotonNetwork, 303

LFG
ChatUserStatus, 93

LoadBalancingClient, 162
AddCallbackTarget, 167
AppId, 184
AppVersion, 184
AuthMode, 182
AuthValues, 184
ChangeLocalID, 167
ClientType, 184
CloudRegion, 184
ConnectionCallbackTargets, 182
ConnectToMasterServer, 168
ConnectToNameServer, 168
ConnectToRegionMaster, 168
CurrentCluster, 185
CurrentLobby, 185
CurrentRoom, 185
CurrentServerAddress, 185
DebugReturn, 168

Generated by Doxygen

438 INDEX

Disconnect, 169
DisconnectedCause, 185
EnableLobbyStatistics, 182
EnableProtocolFallback, 185
EncryptionMode, 182
EventReceived, 190
ExpectedProtocol, 186
GameServerAddress, 186
InLobby, 186
InRoom, 186
IsConnected, 186
IsConnectedAndReady, 187
IsFetchingFriendList, 187
IsUsingNameServer, 187
LoadBalancingClient, 166
LoadBalancingPeer, 187
LocalPlayer, 187
MasterServerAddress, 188
MatchMakingCallbackTargets, 182
NameServerAddress, 188
NameServerHost, 183
NickName, 188
OnEvent, 169
OnMessage, 169
OnOperationResponse, 169
OnStatusChanged, 170
OpChangeGroups, 170
OpCreateRoom, 170
OpFindFriends, 171
OpGetGameList, 172
OpJoinLobby, 172
OpJoinOrCreateRoom, 173
OpJoinRandomOrCreateRoom, 173
OpJoinRandomRoom, 174
OpJoinRoom, 175
OpLeaveLobby, 176
OpLeaveRoom, 176
OpRaiseEvent, 176
OpRejoinRoom, 177
OpResponseReceived, 190
OpSetCustomPropertiesOfActor, 177
OpSetCustomPropertiesOfRoom, 178
OpWebRpc, 179
PlayersInRoomsCount, 188
PlayersOnMasterCount, 188
ProxyServerAddress, 183
ReconnectAndRejoin, 180
ReconnectToMaster, 180
RegionHandler, 183
RemoveCallbackTarget, 180
Room, 383
RoomsCount, 188
SerializationProtocol, 189
Server, 189
ServerPortOverrides, 183
Service, 181
SimulateConnectionLoss, 181
State, 189

StateChanged, 190
SummaryToCache, 183
UseAlternativeUdpPorts, 189
UserId, 189

LoadBalancingPeer, 190
LoadBalancingClient, 187
LoadBalancingPeer, 192
OpAuthenticate, 192
OpAuthenticateOnce, 193
OpChangeGroups, 194
OpCreateRoom, 194
OpFindFriends, 194
OpGetGameList, 195
OpJoinLobby, 195
OpJoinRandomOrCreateRoom, 196
OpJoinRandomRoom, 196
OpJoinRoom, 196
OpLeaveLobby, 197
OpLeaveRoom, 197
OpRaiseEvent, 197
OpSettings, 198

LoadLevel
PhotonNetwork, 285, 286

Lobby
EnterRoomParams, 110

LobbyName
ParameterCode, 245

LobbyStats
EventCode, 125
ParameterCode, 245

LobbyType
ParameterCode, 245
Photon.Realtime, 30

LocalPlayer
LoadBalancingClient, 187
PhotonNetwork, 304

LogLevel
PhotonNetwork, 296

LogStats
SupportLogger, 401

LogTrafficStats
SupportLogger, 409

MasterClient
Photon.Realtime, 31
PhotonNetwork, 304
Public API, 13

MasterClientId
GamePropertyKey, 134
ParameterCode, 245
Room, 383

masterClientId
RoomInfo, 389

MasterPeerCount
ParameterCode, 246

MasterServer
Photon.Realtime, 31

MasterServerAddress
LoadBalancingClient, 188

Generated by Doxygen

INDEX 439

MasterServerPort
PhotonPortDefinition, 310

Match
EventCode, 125

MatchingType
OpJoinRandomRoomParams, 232

MatchMakingCallbacksContainer, 198
OnCreatedRoom, 199
OnCreateRoomFailed, 199
OnFriendListUpdate, 201
OnJoinedRoom, 201
OnJoinRandomFailed, 201
OnJoinRoomFailed, 202
OnLeftRoom, 202

MatchMakingCallbackTargets
LoadBalancingClient, 182

MatchmakingMode
Photon.Realtime, 30

MatchMakingType
ParameterCode, 246

MAX_VIEW_IDS
PhotonNetwork, 296

MaxCcuReached
ErrorCode, 116, 120
Photon.Chat, 18
Photon.Realtime, 28

MaxDatagrams
PhotonHandler, 261

MaxPlayers
ConnectAndJoinRandom, 96
GamePropertyKey, 134
Room, 384
RoomInfo, 390
RoomOptions, 392

maxPlayers
RoomInfo, 389

MaxResendsBeforeDisconnect
PhotonNetwork, 304

MaxSubscribers
ChannelCreationOptions, 55
ChatChannel, 62

Merge
Extensions, 128

MergeCache
Photon.Realtime, 29

MergeStringKeys
Extensions, 128

Message
ChatParameterCode, 87
WebRpcResponse, 424

MessageCount
ChatChannel, 62

MessageLimit
ChatChannel, 61
ChatClient, 76

Messages
ChatChannel, 61
ChatParameterCode, 87

MinimalTimeScaleToDispatchInFixedUpdate
PhotonNetwork, 297

MonoBehaviourPun, 203
photonView, 203

MonoBehaviourPunCallbacks, 203
OnConnected, 205
OnConnectedToMaster, 205
OnCreatedRoom, 206
OnCreateRoomFailed, 206
OnCustomAuthenticationFailed, 206
OnCustomAuthenticationResponse, 207
OnDisconnected, 207
OnErrorInfo, 207
OnFriendListUpdate, 208
OnJoinedLobby, 208
OnJoinedRoom, 208
OnJoinRandomFailed, 209
OnJoinRoomFailed, 209
OnLeftLobby, 210
OnLeftRoom, 210
OnLobbyStatisticsUpdate, 210
OnMasterClientSwitched, 210
OnPlayerEnteredRoom, 211
OnPlayerLeftRoom, 211
OnPlayerPropertiesUpdate, 211
OnRegionListReceived, 212
OnRoomListUpdate, 212
OnRoomPropertiesUpdate, 212
OnWebRpcResponse, 213

MoveByKeys, 213
MsgId

ChatParameterCode, 87
MsgIds

ChatParameterCode, 88

Name
ChatChannel, 61
Room, 384
RoomInfo, 390
TypedLobby, 420
WebRpcResponse, 424

name
RoomInfo, 389

NameServer
Photon.Realtime, 31

NameServerAddress
ChatClient, 78
ChatPeer, 92
LoadBalancingClient, 188

NameServerHost
ChatPeer, 91
LoadBalancingClient, 183

NameServerPort
PhotonPortDefinition, 310

NameServerPortOverride
ChatPeer, 91

NestedComponentUtilities, 214
GetNestedComponentInParent< T, NestedT >,

215

Generated by Doxygen

440 INDEX

GetNestedComponentInParents< T, NestedT >,
215

GetNestedComponentsInChildren< T >, 216
GetNestedComponentsInChildren< T, NestedT >,

216
GetNestedComponentsInChildren< T, SearchT,

NestedT >, 217
GetNestedComponentsInParents< T >, 217
GetNestedComponentsInParents< T, NestedT >,

218
GetParentComponent< T >, 218

NetworkClientState
PhotonNetwork, 304

NetworkingClient
PhotonNetwork, 297

NetworkLogging
AppSettings, 38
ChatAppSettings, 57

NetworkStatisticsEnabled
PhotonNetwork, 305

NetworkStatisticsReset
PhotonNetwork, 286

NetworkStatisticsToString
PhotonNetwork, 286

NickName
LoadBalancingClient, 188
ParameterCode, 246
PhotonNetwork, 305
Player, 353

NintendoSwitch
Photon.Chat, 19
Photon.Realtime, 27

NodeType
CellTreeNode, 54

None
Photon.Chat, 18, 19
Photon.Realtime, 27, 31

NoRandomMatchFound
ErrorCode, 116, 121

NormalColor
TextButtonTransition, 413

NormalOffColor
TextToggleIsOnTransition, 415

NormalOnColor
TextToggleIsOnTransition, 415

ObjectsInOneUpdate
PhotonNetwork, 297

Oculus
Photon.Chat, 19
Photon.Realtime, 27

Offline
ChatUserStatus, 93

OfflineMode
PhotonNetwork, 305

Ok
ErrorCode, 116, 121

OnChatStateChange
IChatClientListener, 137

OnClickDestroy, 219
OnClickInstantiate, 220
OnClickRpc, 220
OnConnected

ConnectionCallbacksContainer, 97
IChatClientListener, 137
IConnectionCallbacks, 141
MonoBehaviourPunCallbacks, 205
SupportLogger, 401

OnConnectedToMaster
ConnectAndJoinRandom, 95
ConnectionCallbacksContainer, 98
IConnectionCallbacks, 141
MonoBehaviourPunCallbacks, 205
SupportLogger, 401

OnControllerChange
IOnPhotonViewControllerChange, 153

OnCountdownTimerHasExpired
CountdownTimer, 104

OnCreatedRoom
IMatchmakingCallbacks, 149
MatchMakingCallbacksContainer, 199
MonoBehaviourPunCallbacks, 206
OnJoinedInstantiate, 223
PhotonHandler, 257
SupportLogger, 401

OnCreateRoomFailed
IMatchmakingCallbacks, 149
MatchMakingCallbacksContainer, 199
MonoBehaviourPunCallbacks, 206
OnJoinedInstantiate, 223
PhotonHandler, 257
SupportLogger, 402

OnCustomAuthenticationFailed
ConnectionCallbacksContainer, 98
IConnectionCallbacks, 141
MonoBehaviourPunCallbacks, 206
SupportLogger, 402

OnCustomAuthenticationResponse
ConnectionCallbacksContainer, 99
IConnectionCallbacks, 142
MonoBehaviourPunCallbacks, 207
SupportLogger, 404

OnDisconnected
ConnectAndJoinRandom, 95
ConnectionCallbacksContainer, 99
IChatClientListener, 137
IConnectionCallbacks, 142
MonoBehaviourPunCallbacks, 207
SupportLogger, 404

OnDrawGizmos
CullArea, 105

OnErrorInfo
IErrorInfoCallback, 143
MonoBehaviourPunCallbacks, 207

OnEscapeQuit, 221
OnEvent

IOnEventCallback, 152

Generated by Doxygen

INDEX 441

LoadBalancingClient, 169
PunTurnManager, 366

OnFriendListUpdate
IMatchmakingCallbacks, 149
MatchMakingCallbacksContainer, 201
MonoBehaviourPunCallbacks, 208
OnJoinedInstantiate, 224
SupportLogger, 404

OnGetMessages
IChatClientListener, 137

OnJoinedInstantiate, 221
DespawnObjects, 222
GetRandomOffset, 222
GetSpawnPoint, 223
OnCreatedRoom, 223
OnCreateRoomFailed, 223
OnFriendListUpdate, 224
OnJoinedRoom, 224
OnJoinRandomFailed, 224
OnJoinRoomFailed, 225
OnLeftRoom, 225

OnJoinedLobby
ConnectAndJoinRandom, 95
ILobbyCallbacks, 147
MonoBehaviourPunCallbacks, 208
SupportLogger, 404

OnJoinedRoom
ConnectAndJoinRandom, 95
IMatchmakingCallbacks, 150
MatchMakingCallbacksContainer, 201
MonoBehaviourPunCallbacks, 208
OnJoinedInstantiate, 224
PhotonHandler, 257
PlayerNumbering, 355
PunTeams, 362
SupportLogger, 405

OnJoinRandomFailed
ConnectAndJoinRandom, 96
IMatchmakingCallbacks, 150
MatchMakingCallbacksContainer, 201
MonoBehaviourPunCallbacks, 209
OnJoinedInstantiate, 224
PhotonHandler, 258
SupportLogger, 405

OnJoinRoomFailed
IMatchmakingCallbacks, 151
MatchMakingCallbacksContainer, 202
MonoBehaviourPunCallbacks, 209
OnJoinedInstantiate, 225
PhotonHandler, 258
SupportLogger, 406

OnLeftLobby
ILobbyCallbacks, 147
MonoBehaviourPunCallbacks, 210
SupportLogger, 406

OnLeftRoom
IMatchmakingCallbacks, 151
MatchMakingCallbacksContainer, 202

MonoBehaviourPunCallbacks, 210
OnJoinedInstantiate, 225
PhotonHandler, 259
PlayerNumbering, 355
PunTeams, 363
SupportLogger, 406

Online
ChatUserStatus, 93

OnLobbyStatisticsUpdate
ILobbyCallbacks, 147
MonoBehaviourPunCallbacks, 210
SupportLogger, 406

OnMasterClientSwitched
IInRoomCallbacks, 144
MonoBehaviourPunCallbacks, 210
PhotonHandler, 259
SupportLogger, 407

OnMessage
LoadBalancingClient, 169

OnOperationResponse
LoadBalancingClient, 169

OnOwnerChange
IOnPhotonViewOwnerChange, 154

OnOwnershipRequest
IPunOwnershipCallbacks, 156

OnOwnershipTransfered
IPunOwnershipCallbacks, 156

OnOwnershipTransferFailed
IPunOwnershipCallbacks, 157

OnPhotonSerializeView
CullingHandler, 107
PhotonAnimatorView, 253
PhotonRigidbody2DView, 311
PhotonRigidbodyView, 312
PhotonTransformView, 332
PhotonTransformViewClassic, 333
Public API, 13
SmoothSyncMovement, 398

OnPlayerEnteredRoom
IInRoomCallbacks, 145
MonoBehaviourPunCallbacks, 211
PhotonHandler, 259
PlayerNumbering, 355
PunTeams, 363
SupportLogger, 407

OnPlayerFinished
IPunTurnManagerCallbacks, 159

OnPlayerLeftRoom
IInRoomCallbacks, 145
MonoBehaviourPunCallbacks, 211
PhotonHandler, 259
PlayerNumbering, 356
PunTeams, 363
SupportLogger, 407

OnPlayerMove
IPunTurnManagerCallbacks, 160

OnPlayerNumberingChanged
PlayerNumbering, 357

Generated by Doxygen

442 INDEX

OnPlayerPropertiesUpdate
IInRoomCallbacks, 145
MonoBehaviourPunCallbacks, 211
PhotonHandler, 260
PlayerNumbering, 356
PunTeams, 363
SupportLogger, 407

OnPointerOverTooltip, 226
OnPreNetDestroy

IOnPhotonViewPreNetDestroy, 154
OnPrivateMessage

IChatClientListener, 138
OnRegionListReceived

ConnectionCallbacksContainer, 99
IConnectionCallbacks, 142
MonoBehaviourPunCallbacks, 212
SupportLogger, 408

OnRoomListUpdate
ILobbyCallbacks, 147
MonoBehaviourPunCallbacks, 212
SupportLogger, 408

OnRoomPropertiesUpdate
CountdownTimer, 103
IInRoomCallbacks, 146
MonoBehaviourPunCallbacks, 212
PhotonHandler, 260
PunTurnManager, 366
SupportLogger, 408

OnStartDelete, 226
OnStatusChanged

LoadBalancingClient, 170
OnStatusUpdate

IChatClientListener, 138
OnSubscribed

IChatClientListener, 139
OnTabChanged

TabViewManager, 411
OnTurnBegins

IPunTurnManagerCallbacks, 160
OnTurnCompleted

IPunTurnManagerCallbacks, 160
OnTurnTimeEnds

IPunTurnManagerCallbacks, 160
OnUnsubscribed

IChatClientListener, 139
OnUserSubscribed

IChatClientListener, 139
OnUserUnsubscribed

IChatClientListener, 140
OnWebRpcResponse

IWebRpcCallback, 161
MonoBehaviourPunCallbacks, 213

OpAuthenticate
LoadBalancingPeer, 192

OpAuthenticateOnce
LoadBalancingPeer, 193

OpChangeGroups
LoadBalancingClient, 170

LoadBalancingPeer, 194
OpCleanActorRpcBuffer

PhotonNetwork, 286
OpCleanRpcBuffer

PhotonNetwork, 287
OpCreateRoom

LoadBalancingClient, 170
LoadBalancingPeer, 194

Open
FindFriendsOptions, 131

OperationCode, 226
Authenticate, 228
AuthenticateOnce, 228
ChangeGroups, 228
CreateGame, 228
FindFriends, 228
GetGameList, 228
GetLobbyStats, 229
GetProperties, 229
GetRegions, 229
Join, 229
JoinGame, 229
JoinLobby, 229
JoinRandomGame, 230
Leave, 230
LeaveLobby, 230
RaiseEvent, 230
ServerSettings, 230
SetProperties, 230
WebRpc, 231

OperationLimitReached
ErrorCode, 116

OperationNotAllowedInCurrentState
ErrorCode, 116, 121
Photon.Chat, 18
Photon.Realtime, 28

OpFindFriends
LoadBalancingClient, 171
LoadBalancingPeer, 194

OpGetGameList
LoadBalancingClient, 172
LoadBalancingPeer, 195

OpJoinLobby
LoadBalancingClient, 172
LoadBalancingPeer, 195

OpJoinOrCreateRoom
LoadBalancingClient, 173

OpJoinRandomOrCreateRoom
LoadBalancingClient, 173
LoadBalancingPeer, 196

OpJoinRandomRoom
LoadBalancingClient, 174
LoadBalancingPeer, 196

OpJoinRandomRoomParams, 231
ExpectedCustomRoomProperties, 231
ExpectedMaxPlayers, 232
ExpectedUsers, 232
MatchingType, 232

Generated by Doxygen

INDEX 443

SqlLobbyFilter, 232
TypedLobby, 232

OpJoinRoom
LoadBalancingClient, 175
LoadBalancingPeer, 196

OpLeaveLobby
LoadBalancingClient, 176
LoadBalancingPeer, 197

OpLeaveRoom
LoadBalancingClient, 176
LoadBalancingPeer, 197

OpRaiseEvent
LoadBalancingClient, 176
LoadBalancingPeer, 197

OpRejoinRoom
LoadBalancingClient, 177

OpRemoveCompleteCacheOfPlayer
PhotonNetwork, 287

OpResponseReceived
LoadBalancingClient, 190

OpSetCustomPropertiesOfActor
LoadBalancingClient, 177

OpSetCustomPropertiesOfRoom
LoadBalancingClient, 178

OpSettings
LoadBalancingPeer, 198

Optional Gui Elements, 15
OpWebRpc

LoadBalancingClient, 179
Others

Photon.Realtime, 31
Public API, 13

OthersBuffered
Public API, 13

Owner
PhotonView, 346

OwnershipOption
Photon.Pun, 21

OwnershipTransfer
PhotonView, 345

PacketLossByCrcCheck
PhotonNetwork, 305

ParameterCode, 233, 235
ActorList, 238
ActorNr, 238
Add, 238
Address, 233, 239
ApplicationId, 233, 239
AppVersion, 234, 239
AzureLocalNodeId, 239
AzureMasterNodeId, 239
AzureNodeInfo, 239
Broadcast, 240
Cache, 240
CacheSliceIndex, 240
CheckUserOnJoin, 240
CleanupCacheOnLeave, 240
ClientAuthenticationData, 234, 240

ClientAuthenticationParams, 234, 241
ClientAuthenticationType, 234, 241
Cluster, 241
Code, 241
CustomEventContent, 241
CustomInitData, 241
Data, 242
EmptyRoomTTL, 242
EncryptionData, 242
EncryptionMode, 242
EventForward, 242
ExpectedProtocol, 242
ExpectedValues, 243
FindFriendsOptions, 243
FindFriendsRequestList, 243
FindFriendsResponseOnlineList, 243
FindFriendsResponseRoomIdList, 243
GameCount, 243
GameList, 244
GameProperties, 244
Group, 244
Info, 244
IsComingBack, 244
IsInactive, 244
JoinMode, 245
LobbyName, 245
LobbyStats, 245
LobbyType, 245
MasterClientId, 245
MasterPeerCount, 246
MatchMakingType, 246
NickName, 246
PeerCount, 246
PlayerProperties, 246
PlayerTTL, 246
PluginName, 247
Plugins, 247
PluginVersion, 247
Position, 247
Properties, 247
PublishUserId, 247
ReceiverGroup, 248
Region, 234, 248
Remove, 248
RoomName, 248
RoomOptionFlags, 248
Secret, 234
SuppressRoomEvents, 248
TargetActorNr, 249
Token, 249
UriPath, 249
UserId, 235, 249
WebRpcParameters, 249
WebRpcReturnCode, 249
WebRpcReturnMessage, 250

Parameters
WebRpcResponse, 425

Parent

Generated by Doxygen

444 INDEX

CellTreeNode, 54
PayloadEncryption

Photon.Realtime, 28
PeekNext

PhotonStream, 316
Peer

PhotonLagSimulationGui, 262
PeerCount

ParameterCode, 246
PeerCreated

Public API, 12
Photon, 17
Photon.Chat, 17

Authenticated, 19
Authenticating, 19
AuthenticationTicketExpired, 18
ChatDisconnectCause, 18
ChatState, 19
ClientTimeout, 18
ConnectedToFrontEnd, 19
ConnectedToNameServer, 19
ConnectingToFrontEnd, 19
ConnectingToNameServer, 19
ConnectWithFallbackProtocol, 19
Custom, 19
CustomAuthenticationFailed, 18
CustomAuthenticationType, 19
DisconnectByClientLogic, 18
DisconnectByServerLogic, 18
DisconnectByServerReasonUnknown, 18
Disconnected, 19
Disconnecting, 19
DisconnectingFromFrontEnd, 19
DisconnectingFromNameServer, 19
Exception, 18
ExceptionOnConnect, 18
Facebook, 19
InvalidAuthentication, 18
InvalidRegion, 18
MaxCcuReached, 18
NintendoSwitch, 19
None, 18, 19
Oculus, 19
OperationNotAllowedInCurrentState, 18
PlayStation4, 19
PlayStation5, 19
QueuedComingFromFrontEnd, 19
ServerTimeout, 18
Steam, 19
Uninitialized, 19
Viveport, 19
Xbox, 19

Photon.Pun, 20
ConnectMethod, 21
Fixed, 22
OwnershipOption, 21
Request, 22
Takeover, 22

Photon.Pun.UtilityScripts, 22
Photon.Realtime, 24

Actor, 31
AddToRoomCache, 29
AddToRoomCacheGlobal, 29
All, 31
AsyncRandomLobby, 30
AuthenticationTicketExpired, 28
AuthModeOption, 26
ClientAppType, 26
ClientTimeout, 28
CreateIfNotExists, 30
Custom, 27
CustomAuthenticationFailed, 28
CustomAuthenticationType, 27
DatagramEncryption, 28
DatagramEncryptionGCM, 29
DatagramEncryptionRandomSequence, 29
Default, 30
DisconnectByClientLogic, 28
DisconnectByDisconnectMessage, 28
DisconnectByOperationLimit, 28
DisconnectByServerLogic, 28
DisconnectByServerReasonUnknown, 28
DisconnectCause, 27
DnsExceptionOnConnect, 27
DoNotCache, 29
EncryptionMode, 28
EventCaching, 29
Exception, 28
ExceptionOnConnect, 27
Facebook, 27
FillRoom, 30
Fusion, 27
Game, 31
GameAndActor, 31
GameServer, 31
InvalidAuthentication, 28
InvalidRegion, 28
JoinMode, 29
JoinOrRejoin, 30
LobbyType, 30
MasterClient, 31
MasterServer, 31
MatchmakingMode, 30
MaxCcuReached, 28
MergeCache, 29
NameServer, 31
NintendoSwitch, 27
None, 27, 31
Oculus, 27
OperationNotAllowedInCurrentState, 28
Others, 31
PayloadEncryption, 28
PlayStation4, 27
PlayStation5, 27
PropertyTypeFlag, 30
RandomMatching, 30

Generated by Doxygen

INDEX 445

Realtime, 27
ReceiverGroup, 31
RejoinOnly, 30
RemoveCache, 29
RemoveFromRoomCache, 29
RemoveFromRoomCacheForActorsLeft, 29
ReplaceCache, 29
SerialMatching, 30
ServerAddressInvalid, 27
ServerConnection, 31
ServerTimeout, 28
SliceIncreaseIndex, 29
SlicePurgeIndex, 29
SlicePurgeUpToIndex, 29
SliceSetIndex, 29
SqlLobby, 30
Steam, 27
Viveport, 27
Voice, 27
Xbox, 27

PhotonAnimatorView, 250
CacheDiscreteTriggers, 251
DoesLayerSynchronizeTypeExist, 251
DoesParameterSynchronizeTypeExist, 251
GetLayerSynchronizeType, 252
GetParameterSynchronizeType, 252
GetSynchronizedLayers, 252
GetSynchronizedParameters, 253
OnPhotonSerializeView, 253
SetLayerSynchronized, 253
SetParameterSynchronized, 254

PhotonAnimatorView.SynchronizedLayer, 409
PhotonAnimatorView.SynchronizedParameter, 410
PhotonAppSettings, 254

Instance, 255
PhotonHandler, 255

Dispatch, 256
FixedUpdate, 256
LateUpdate, 256
MaxDatagrams, 261
OnCreatedRoom, 257
OnCreateRoomFailed, 257
OnJoinedRoom, 257
OnJoinRandomFailed, 258
OnJoinRoomFailed, 258
OnLeftRoom, 259
OnMasterClientSwitched, 259
OnPlayerEnteredRoom, 259
OnPlayerLeftRoom, 259
OnPlayerPropertiesUpdate, 260
OnRoomPropertiesUpdate, 260
SendAsap, 261

PhotonLagSimulationGui, 261
Peer, 262
Visible, 262
WindowId, 262
WindowRect, 262

PhotonMessageInfo, 263

Sender, 263
PhotonNetwork, 263

AddCallbackTarget, 270
AllocateRoomViewID, 270
AllocateViewID, 270, 271
AppVersion, 299
AuthValues, 299
AutomaticallySyncScene, 299
BestRegionSummaryInPreferences, 299
CloseConnection, 271
CloudRegion, 300
ConnectMethod, 296
ConnectToBestCloudServer, 272
ConnectToMaster, 272
ConnectToRegion, 273
ConnectUsingSettings, 273
CountOfPlayers, 300
CountOfPlayersInRooms, 300
CountOfPlayersOnMaster, 300
CountOfRooms, 300
CrcCheckEnabled, 300
CreateRoom, 273
CurrentCluster, 301
CurrentLobby, 301
CurrentRoom, 301
Destroy, 274, 275
DestroyAll, 275
DestroyPlayerObjects, 276
Disconnect, 277
EnableCloseConnection, 296
EnableLobbyStatistics, 301
FetchServerTimestamp, 277
FindFriends, 277
FindGameObjectsWithComponent, 278
GameVersion, 301
GetCustomRoomList, 278
GetPing, 279
InLobby, 302
InRoom, 302
IsConnected, 302
IsConnectedAndReady, 302
IsMasterClient, 303
IsMessageQueueRunning, 303
JoinLobby, 279
JoinOrCreateRoom, 280
JoinRandomOrCreateRoom, 281
JoinRandomRoom, 282, 283
JoinRoom, 284
KeepAliveInBackground, 303
LeaveLobby, 284
LeaveRoom, 284
LevelLoadingProgress, 303
LoadLevel, 285, 286
LocalPlayer, 304
LogLevel, 296
MasterClient, 304
MAX_VIEW_IDS, 296
MaxResendsBeforeDisconnect, 304

Generated by Doxygen

446 INDEX

MinimalTimeScaleToDispatchInFixedUpdate, 297
NetworkClientState, 304
NetworkingClient, 297
NetworkStatisticsEnabled, 305
NetworkStatisticsReset, 286
NetworkStatisticsToString, 286
NickName, 305
ObjectsInOneUpdate, 297
OfflineMode, 305
OpCleanActorRpcBuffer, 286
OpCleanRpcBuffer, 287
OpRemoveCompleteCacheOfPlayer, 287
PacketLossByCrcCheck, 305
PhotonServerSettings, 305
PhotonViewCollection, 306
PhotonViews, 306
PlayerList, 306
PlayerListOthers, 306
PrecisionForFloatSynchronization, 297
PrecisionForQuaternionSynchronization, 297
PrecisionForVectorSynchronization, 298
PrefabPool, 306
PunVersion, 298
QuickResends, 307
RaiseEvent, 287
Reconnect, 288
ReconnectAndRejoin, 288
RejoinRoom, 288
RemoveBufferedRPCs, 289
RemoveCallbackTarget, 289
RemovePlayerCustomProperties, 290
RemoveRPCs, 290, 291
RemoveRPCsInGroup, 291
ResentReliableCommands, 307
RunRpcCoroutines, 298
SendAllOutgoingCommands, 291
SendRate, 307
SerializationRate, 307
Server, 308
ServerAddress, 308
ServerPortOverrides, 308
ServerSettingsFileName, 298
ServerTimestamp, 308
SetInterestGroups, 292
SetLevelPrefix, 293
SetMasterClient, 293
SetPlayerCustomProperties, 294
SetSendingEnabled, 294, 295
Time, 308
UseAlternativeUdpPorts, 309
UseRpcMonoBehaviourCache, 298
WebRpc, 295

PhotonPing, 309
PhotonPortDefinition, 310

GameServerPort, 310
MasterServerPort, 310
NameServerPort, 310

PhotonRigidbody2DView, 311

OnPhotonSerializeView, 311
PhotonRigidbodyView, 312

OnPhotonSerializeView, 312
PhotonServerSettings

PhotonNetwork, 305
PhotonStatsGui, 313

buttonsOn, 314
healthStatsVisible, 314
statsOn, 314
statsRect, 314
statsWindowOn, 314
trafficStatsOn, 314
Update, 313
WindowId, 315

PhotonStream, 315
Count, 319
IsReading, 319
IsWriting, 319
PeekNext, 316
PhotonStream, 316
ReceiveNext, 316
SendNext, 317
Serialize, 317, 318
ToArray, 318

PhotonStreamQueue, 319
Deserialize, 320
HasQueuedObjects, 321
PhotonStreamQueue, 320
ReceiveNext, 321
Reset, 321
SendNext, 321
Serialize, 322

PhotonTeam, 322
PhotonTeamExtensions, 322

GetPhotonTeam, 323
JoinTeam, 323, 324
LeaveCurrentTeam, 324
SwitchTeam, 325
TryGetTeamMates, 326

PhotonTeamsManager, 326
GetAvailableTeams, 327
GetTeamMembersCount, 328
TeamPlayerProp, 331
TryGetTeamByCode, 329
TryGetTeamByName, 329
TryGetTeamMatesOfPlayer, 330
TryGetTeamMembers, 330, 331

PhotonTransformView, 331
OnPhotonSerializeView, 332

PhotonTransformViewClassic, 333
OnPhotonSerializeView, 333
SetSynchronizedValues, 334

PhotonTransformViewPositionControl, 335
GetExtrapolatedPositionOffset, 335
GetNetworkPosition, 335
SetSynchronizedValues, 335
UpdatePosition, 336

PhotonTransformViewPositionModel, 336

Generated by Doxygen

INDEX 447

PhotonTransformViewRotationControl, 336
GetNetworkRotation, 337

PhotonTransformViewRotationModel, 337
PhotonTransformViewScaleControl, 337

GetNetworkScale, 337
PhotonTransformViewScaleModel, 338
PhotonView, 338

AddCallback< T >, 340
AddCallbackTarget, 341
Find, 341
FindObservables, 341
InstantiationData, 346
IsMine, 346
IsRoomView, 346
Owner, 346
OwnershipTransfer, 345
RefreshRpcMonoBehaviourCache, 342
RemoveCallback< T >, 342
RemoveCallbackTarget, 342
RequestOwnership, 343
RPC, 343
RpcSecure, 344
TransferOwnership, 345
ViewID, 346

photonView
MonoBehaviourPun, 203

PhotonViewCollection
PhotonNetwork, 306

PhotonViews
PhotonNetwork, 306

PingImplementation
RegionHandler, 372

PingMono, 347
StartPing, 347

Player, 348
ActorNumber, 352
CustomProperties, 352
Equals, 349
Get, 349
GetHashCode, 349
GetNext, 349
GetNextFor, 350
IsInactive, 353
IsLocal, 352
IsMasterClient, 353
NickName, 353
SetCustomProperties, 350
TagObject, 352
ToString, 351
ToStringFull, 352
UserId, 353

PlayerCount
GamePropertyKey, 134
Room, 384
RoomInfo, 391
TypedLobbyInfo, 421

PlayerList
PhotonNetwork, 306

PlayerListOthers
PhotonNetwork, 306

PlayerName
ActorProperties, 33

PlayerNumbering, 354
dontDestroyOnLoad, 357
instance, 357
OnJoinedRoom, 355
OnLeftRoom, 355
OnPlayerEnteredRoom, 355
OnPlayerLeftRoom, 356
OnPlayerNumberingChanged, 357
OnPlayerPropertiesUpdate, 356
PlayerNumberingChanged, 356
RefreshData, 357
RoomPlayerIndexedProp, 357

PlayerNumberingChanged
PlayerNumbering, 356

PlayerNumberingExtensions, 358
GetPlayerNumber, 358
SetPlayerNumber, 358

PlayerProperties
EnterRoomParams, 110
ParameterCode, 246

Players
Room, 384

PlayersInRoomsCount
LoadBalancingClient, 188

PlayersOnMasterCount
LoadBalancingClient, 188

PlayersPerTeam
PunTeams, 364

PlayerTTL
ParameterCode, 246

PlayerTtl
GamePropertyKey, 135
Room, 384
RoomOptions, 392

playerTtl
RoomInfo, 389

Playing
ChatUserStatus, 94

PlayStation4
Photon.Chat, 19
Photon.Realtime, 27

PlayStation5
Photon.Chat, 19
Photon.Realtime, 27

PluginMismatch
ErrorCode, 117

PluginName
ParameterCode, 247

PluginReportedError
ErrorCode, 117

Plugins
ParameterCode, 247
RoomOptions, 393

PluginVersion

Generated by Doxygen

448 INDEX

ParameterCode, 247
PointedAtGameObjectInfo, 359
Port

AppSettings, 38
ChatAppSettings, 57

Position
ParameterCode, 247

PrecisionForFloatSynchronization
PhotonNetwork, 297

PrecisionForQuaternionSynchronization
PhotonNetwork, 297

PrecisionForVectorSynchronization
PhotonNetwork, 298

PrefabPool
PhotonNetwork, 306

PrivateChannels
ChatClient, 76

PrivateChatHistoryLength
ChatClient, 76

PrivateMessage
ChatEventCode, 81

Properties
ChatParameterCode, 88
ParameterCode, 247

PropertiesChanged
ChatEventCode, 81
EventCode, 125

PropertiesListedInLobby
Room, 384

propertiesListedInLobby
RoomInfo, 389

PropertyTypeFlag
Photon.Realtime, 30

PropsListedInLobby
GamePropertyKey, 135

Protocol
AppSettings, 38
ChatAppSettings, 57

ProxyServer
AppSettings, 38

ProxyServerAddress
LoadBalancingClient, 183

Public API, 11
All, 13
AllBuffered, 13
AllBufferedViaServer, 13
AllViaServer, 13
Authenticated, 12
Authenticating, 12
ClientState, 12
ConnectedToGameServer, 12
ConnectedToMasterServer, 12
ConnectedToNameServer, 12
ConnectingToGameServer, 12
ConnectingToMasterServer, 12
ConnectingToNameServer, 12
ConnectWithFallbackProtocol, 12
Disconnected, 12

Disconnecting, 12
DisconnectingFromGameServer, 12
DisconnectingFromMasterServer, 12
DisconnectingFromNameServer, 12
ErrorsOnly, 13
Full, 13
Informational, 13
Joined, 12
JoinedLobby, 12
Joining, 12
JoiningLobby, 12
Leaving, 12
MasterClient, 13
OnPhotonSerializeView, 13
Others, 13
OthersBuffered, 13
PeerCreated, 12
PunLogLevel, 12
RpcTarget, 13

PublicChannels
ChatClient, 76

Publish
ChatOperationCode, 83

PublishMessage
ChatClient, 68

PublishSubscribers
ChannelCreationOptions, 55
ChatChannel, 62

PublishUserId
ParameterCode, 247
Room, 385
RoomOptions, 394

PunExtensions, 359
AlmostEquals, 360

PunLogLevel
Public API, 12

PunPlayerScores, 361
PunRPC, 361
PunTeams, 361

OnJoinedRoom, 362
OnLeftRoom, 363
OnPlayerEnteredRoom, 363
OnPlayerLeftRoom, 363
OnPlayerPropertiesUpdate, 363
PlayersPerTeam, 364
Team, 362
TeamPlayerProp, 364

PunTurnManager, 364
BeginTurn, 365
ElapsedTimeInTurn, 368
EvFinalMove, 367
EvMove, 367
GetPlayerFinishedTurn, 365
IsCompletedByAll, 368
IsFinishedByMe, 368
IsOver, 368
OnEvent, 366
OnRoomPropertiesUpdate, 366

Generated by Doxygen

INDEX 449

RemainingSecondsInTurn, 368
SendMove, 366
Turn, 368
TurnDuration, 367
TurnManagerEventOffset, 367
TurnManagerListener, 367

PunVersion
PhotonNetwork, 298

QueuedComingFromFrontEnd
Photon.Chat, 19

QueueState
EventCode, 126

QuickResends
PhotonNetwork, 307

RaiseEvent
OperationCode, 230
PhotonNetwork, 287

RaiseEventOptions, 369
CachingOption, 369
Default, 370
Flags, 370
InterestGroup, 370
Receivers, 370
SequenceChannel, 370
TargetActors, 370

RandomMatching
Photon.Realtime, 30

Realtime
Photon.Realtime, 27

RealtimeFallbackThread
ConnectionHandler, 100

ReceiveNext
PhotonStream, 316
PhotonStreamQueue, 321

ReceiverGroup
ParameterCode, 248
Photon.Realtime, 31

Receivers
RaiseEventOptions, 370

Reconnect
PhotonNetwork, 288

ReconnectAndRejoin
LoadBalancingClient, 180
PhotonNetwork, 288

ReconnectToMaster
LoadBalancingClient, 180

RefreshData
PlayerNumbering, 357

RefreshRpcMonoBehaviourCache
PhotonView, 342

Region, 371
Cluster, 371
ParameterCode, 234, 248

RegionHandler, 371
BestRegion, 372
EnabledRegions, 373
LoadBalancingClient, 183

PingImplementation, 372
SummaryToCache, 373

RegionPinger, 373
ResolveHost, 374
Start, 374

RejoinOnly
Photon.Realtime, 30

RejoinRoom
PhotonNetwork, 288

RemainingSecondsInTurn
PunTurnManager, 368

Remove
ParameterCode, 248

RemoveBufferedRPCs
PhotonNetwork, 289

RemoveCache
Photon.Realtime, 29

RemoveCallback< T >
PhotonView, 342

RemoveCallbackTarget
LoadBalancingClient, 180
PhotonNetwork, 289
PhotonView, 342

Removed
GamePropertyKey, 135

RemovedFromList
RoomInfo, 389

RemoveFriends
ChatClient, 69
ChatOperationCode, 83

RemoveFromRoomCache
Photon.Realtime, 29

RemoveFromRoomCacheForActorsLeft
Photon.Realtime, 29

RemovePlayerCustomProperties
PhotonNetwork, 290

RemoveRPCs
PhotonNetwork, 290, 291

RemoveRPCsInGroup
PhotonNetwork, 291

ReplaceCache
Photon.Realtime, 29

Request
Photon.Pun, 22

RequestOwnership
PhotonView, 343

ResentReliableCommands
PhotonNetwork, 307

Reset
PhotonStreamQueue, 321

ResetBestRegionCodeInPreferences
ServerSettings, 396

ResolveHost
RegionPinger, 374

ResourceCache
DefaultPool, 109

ResultCode
WebRpcResponse, 425

Generated by Doxygen

450 INDEX

Room, 375
AddPlayer, 378
AutoCleanUp, 382
BroadcastPropertiesChangeToAll, 382
ClearExpectedUsers, 378
DeleteNullProperties, 382
EmptyRoomTtl, 382
ExpectedUsers, 383
GetPlayer, 378
IsOpen, 383
IsVisible, 383
LoadBalancingClient, 383
MasterClientId, 383
MaxPlayers, 384
Name, 384
PlayerCount, 384
Players, 384
PlayerTtl, 384
PropertiesListedInLobby, 384
PublishUserId, 385
Room, 376
SetCustomProperties, 379
SetExpectedUsers, 380
SetMasterClient, 380
SetPropertiesListedInLobby, 381
StorePlayer, 381
SuppressPlayerInfo, 385
SuppressRoomEvents, 385
ToString, 381
ToStringFull, 382

RoomCount
TypedLobbyInfo, 421

RoomInfo, 385
autoCleanUp, 388
CustomProperties, 390
emptyRoomTtl, 388
Equals, 387
expectedUsers, 388
GetHashCode, 387
IsOpen, 390
isOpen, 388
IsVisible, 390
isVisible, 388
masterClientId, 389
MaxPlayers, 390
maxPlayers, 389
Name, 390
name, 389
PlayerCount, 391
playerTtl, 389
propertiesListedInLobby, 389
RemovedFromList, 389
ToString, 387
ToStringFull, 387

RoomName
EnterRoomParams, 110
ParameterCode, 248

RoomOptionFlags

ParameterCode, 248
RoomOptions, 391

BroadcastPropsChangeToAll, 393
CleanupCacheOnLeave, 393
CustomRoomProperties, 392
CustomRoomPropertiesForLobby, 392
DeleteNullProperties, 393
EmptyRoomTtl, 392
EnterRoomParams, 110
IsOpen, 394
IsVisible, 394
MaxPlayers, 392
PlayerTtl, 392
Plugins, 393
PublishUserId, 394
SuppressPlayerInfo, 394
SuppressRoomEvents, 394

RoomPlayerIndexedProp
PlayerNumbering, 357

RoomsCount
LoadBalancingClient, 188

RootNode
CellTree, 50

RPC
PhotonView, 343

RpcSecure
PhotonView, 344

RpcTarget
Public API, 13

RunRpcCoroutines
PhotonNetwork, 298

SceneManagerHelper, 395
ScoreExtensions, 395
Secret

ChatParameterCode, 88
ParameterCode, 234

Selectable
TextButtonTransition, 414

SelectTab
TabViewManager, 411

SendAcksOnly
ChatClient, 69

SendAllOutgoingCommands
PhotonNetwork, 291

SendAsap
PhotonHandler, 261

SendAuthCookie
WebFlags, 422

Sender
ChatParameterCode, 88
PhotonMessageInfo, 263

Senders
ChatChannel, 61
ChatParameterCode, 88

SendMove
PunTurnManager, 366

SendNext
PhotonStream, 317

Generated by Doxygen

INDEX 451

PhotonStreamQueue, 321
SendPrivate

ChatOperationCode, 83
SendPrivateMessage

ChatClient, 69, 70
SendRate

PhotonNetwork, 307
SendState

WebFlags, 423
SendSync

WebFlags, 423
SequenceChannel

RaiseEventOptions, 370
SerializationProtocol

LoadBalancingClient, 189
SerializationRate

PhotonNetwork, 307
Serialize

PhotonStream, 317, 318
PhotonStreamQueue, 322

SerialMatching
Photon.Realtime, 30

Server
AppSettings, 38
ChatAppSettings, 57
LoadBalancingClient, 189
PhotonNetwork, 308

ServerAddress
PhotonNetwork, 308

ServerAddressInvalid
Photon.Realtime, 27

ServerConnection
Photon.Realtime, 31

ServerFull
ErrorCode, 117, 121

ServerPortOverrides
LoadBalancingClient, 183
PhotonNetwork, 308

ServerSettings, 395
BestRegionSummaryInPreferences, 397
DevRegion, 397
IsAppId, 396
OperationCode, 230
ResetBestRegionCodeInPreferences, 396
ToString, 397
UseCloud, 397

ServerSettingsFileName
PhotonNetwork, 298

ServerTimeout
Photon.Chat, 18
Photon.Realtime, 28

ServerTimestamp
PhotonNetwork, 308

Service
ChatClient, 70
LoadBalancingClient, 181

SetAuthPostData
AuthenticationValues, 42, 46, 47

SetCustomProperties
Player, 350
Room, 379

SetExpectedUsers
Room, 380

SetFinishedTurn
TurnExtensions, 417

SetInterestGroups
PhotonNetwork, 292

SetLayerSynchronized
PhotonAnimatorView, 253

SetLevelPrefix
PhotonNetwork, 293

SetMasterClient
PhotonNetwork, 293
Room, 380

SetOnlineStatus
ChatClient, 71

SetParameterSynchronized
PhotonAnimatorView, 254

SetPlayerCustomProperties
PhotonNetwork, 294

SetPlayerNumber
PlayerNumberingExtensions, 358

SetProperties
ChatOperationCode, 84
EventCode, 126
OperationCode, 230

SetPropertiesListedInLobby
Room, 381

SetSendingEnabled
PhotonNetwork, 294, 295

SetSynchronizedValues
PhotonTransformViewClassic, 334
PhotonTransformViewPositionControl, 335

SetTeam
TeamExtensions, 412

SetTurn
TurnExtensions, 417

SimulateConnectionLoss
LoadBalancingClient, 181

SkipMessage
ChatParameterCode, 88

SliceIncreaseIndex
Photon.Realtime, 29

SlicePurgeIndex
Photon.Realtime, 29

SlicePurgeUpToIndex
Photon.Realtime, 29

SliceSetIndex
Photon.Realtime, 29

SlotError
ErrorCode, 117

SmoothSyncMovement, 398
OnPhotonSerializeView, 398

SocketImplementationConfig
ChatClient, 78

SqlLobby

Generated by Doxygen

452 INDEX

Photon.Realtime, 30
SqlLobbyFilter

OpJoinRandomRoomParams, 232
Start

RegionPinger, 374
StartPing

PingMono, 347
State

ChatClient, 78
LoadBalancingClient, 189

StateChanged
LoadBalancingClient, 190

StatesGui, 399
statsOn

PhotonStatsGui, 314
statsRect

PhotonStatsGui, 314
statsWindowOn

PhotonStatsGui, 314
Status

ChatParameterCode, 89
StatusUpdate

ChatEventCode, 81
Steam

Photon.Chat, 19
Photon.Realtime, 27

StopThread
ChatClient, 72

StorePlayer
Room, 381

StripKeysWithNullValues
Extensions, 128, 129

StripToStringKeys
Extensions, 129

SUBDIVISION_FIRST_LEVEL_ORDER
CullArea, 106

SUBDIVISION_SECOND_LEVEL_ORDER
CullArea, 106

SUBDIVISION_THIRD_LEVEL_ORDER
CullArea, 106

Subscribe
ChatClient, 72, 73
ChatEventCode, 81
ChatOperationCode, 84

SubscribeResults
ChatParameterCode, 89

Subscribers
ChatChannel, 62

SummaryToCache
LoadBalancingClient, 183
RegionHandler, 373

SupportLogger, 399
Client, 409
LogStats, 401
LogTrafficStats, 409
OnConnected, 401
OnConnectedToMaster, 401
OnCreatedRoom, 401

OnCreateRoomFailed, 402
OnCustomAuthenticationFailed, 402
OnCustomAuthenticationResponse, 404
OnDisconnected, 404
OnFriendListUpdate, 404
OnJoinedLobby, 404
OnJoinedRoom, 405
OnJoinRandomFailed, 405
OnJoinRoomFailed, 406
OnLeftLobby, 406
OnLeftRoom, 406
OnLobbyStatisticsUpdate, 406
OnMasterClientSwitched, 407
OnPlayerEnteredRoom, 407
OnPlayerLeftRoom, 407
OnPlayerPropertiesUpdate, 407
OnRegionListReceived, 408
OnRoomListUpdate, 408
OnRoomPropertiesUpdate, 408

SuppressPlayerInfo
Room, 385
RoomOptions, 394

SuppressRoomEvents
ParameterCode, 248
Room, 385
RoomOptions, 394

SwitchTeam
PhotonTeamExtensions, 325

Tabs
TabViewManager, 411

TabViewManager, 410
OnTabChanged, 411
SelectTab, 411
Tabs, 411
ToggleGroup, 412

TabViewManager.Tab, 410
TabViewManager.TabChangeEvent, 410
TagObject

Player, 352
Takeover

Photon.Pun, 22
TargetActorNr

ParameterCode, 249
TargetActors

RaiseEventOptions, 370
Team

PunTeams, 362
TeamExtensions, 412

GetTeam, 412
SetTeam, 412

TeamPlayerProp
PhotonTeamsManager, 331
PunTeams, 364

TextButtonTransition, 413
HoverColor, 413
NormalColor, 413
Selectable, 414

TextToggleIsOnTransition, 414

Generated by Doxygen

INDEX 453

HoverOffColor, 415
HoverOnColor, 415
NormalOffColor, 415
NormalOnColor, 415
toggle, 415

Time
PhotonNetwork, 308

ToArray
PhotonStream, 318

toggle
TextToggleIsOnTransition, 415

ToggleGroup
TabViewManager, 412

Token
AuthenticationValues, 44, 48
ParameterCode, 249

ToString
AuthenticationValues, 43, 47
Player, 351
Room, 381
RoomInfo, 387
ServerSettings, 397

ToStringFull
AppSettings, 36
Extensions, 130
Player, 352
Room, 382
RoomInfo, 387
WebRpcResponse, 424

ToStringFull< T >
Extensions, 130

ToStringMessages
ChatChannel, 60

trafficStatsOn
PhotonStatsGui, 314

TransferOwnership
PhotonView, 345

TransportProtocol
ChatClient, 79

TruncateMessages
ChatChannel, 60

TryGetChannel
ChatClient, 73, 74

TryGetPrivateChannelByUser
ChatClient, 74

TryGetTeamByCode
PhotonTeamsManager, 329

TryGetTeamByName
PhotonTeamsManager, 329

TryGetTeamMates
PhotonTeamExtensions, 326

TryGetTeamMatesOfPlayer
PhotonTeamsManager, 330

TryGetTeamMembers
PhotonTeamsManager, 330, 331

Turn
PunTurnManager, 368

TurnDuration

PunTurnManager, 367
TurnExtensions, 416

FinishedTurnPropKey, 418
GetFinishedTurn, 416
GetTurn, 416
GetTurnStart, 417
SetFinishedTurn, 417
SetTurn, 417
TurnPropKey, 418
TurnStartPropKey, 418

TurnManagerEventOffset
PunTurnManager, 367

TurnManagerListener
PunTurnManager, 367

TurnPropKey
TurnExtensions, 418

TurnStartPropKey
TurnExtensions, 418

Type
TypedLobby, 420

TypedLobby, 418
Default, 420
IsDefault, 420
Name, 420
OpJoinRandomRoomParams, 232
Type, 420
TypedLobby, 419

TypedLobbyInfo, 421
PlayerCount, 421
RoomCount, 421

Uninitialized
Photon.Chat, 19

UniqueRoomId
ChatParameterCode, 89

Unsubscribe
ChatClient, 75
ChatEventCode, 81
ChatOperationCode, 84

Update
PhotonStatsGui, 313

UpdatePosition
PhotonTransformViewPositionControl, 336

UpdateStatus
ChatOperationCode, 84

UriPath
ParameterCode, 249

UseAlternativeUdpPorts
LoadBalancingClient, 189
PhotonNetwork, 309

UseBackgroundWorkerForSending
ChatClient, 79

UseCloud
ServerSettings, 397

UseNameServer
AppSettings, 39

UserBlocked
ErrorCode, 117, 121

UserId

Generated by Doxygen

454 INDEX

ActorProperties, 34
AuthenticationValues, 44, 48
ChatClient, 79
ChatParameterCode, 89
LoadBalancingClient, 189
ParameterCode, 235, 249
Player, 353

UseRpcMonoBehaviourCache
PhotonNetwork, 298

UserProperties
ChatParameterCode, 89

Users
ChatEventCode, 81

UserSubscribed
ChatEventCode, 82

UserUnsubscribed
ChatEventCode, 82

Version
ConnectAndJoinRandom, 97

ViewID
PhotonView, 346

Visible
FindFriendsOptions, 132
PhotonLagSimulationGui, 262

Viveport
Photon.Chat, 19
Photon.Realtime, 27

Voice
Photon.Realtime, 27

WebFlags, 421
ChatParameterCode, 89
HttpForward, 422
SendAuthCookie, 422
SendState, 423
SendSync, 423

WebRpc
OperationCode, 231
PhotonNetwork, 295

WebRpcParameters
ParameterCode, 249

WebRpcResponse, 423
Message, 424
Name, 424
Parameters, 425
ResultCode, 425
ToStringFull, 424
WebRpcResponse, 424

WebRpcReturnCode
ParameterCode, 249

WebRpcReturnMessage
ParameterCode, 250

WindowId
PhotonLagSimulationGui, 262
PhotonStatsGui, 315

WindowRect
PhotonLagSimulationGui, 262

Xbox
Photon.Chat, 19
Photon.Realtime, 27

Generated by Doxygen

	1 Main Page
	1.1 Introduction
	1.2 Documentation And Learning
	1.3 First Steps

	2 General Documentation
	2.1 Photon Unity Networking - First steps
	2.2 Photon
	2.2.1 Exit Games Cloud
	2.2.1.1 Subscriptions bought in Asset Store

	2.2.2 Photon Server SDK

	3 Network Simulation GUI
	4 Network Statistics GUI
	4.0.1 Usage
	4.0.2 Message Statistics
	4.0.2.1 Traffic Statistics
	4.0.2.2 Health Statistics

	4.0.3 Button `¨Reset`¨
	4.0.4 Button `¨To Log`¨
	4.0.5 Button `¨Stats On`¨ (Enabling Traffic Stats)

	5 Public API Module
	6 Module Documentation
	6.1 Public API
	6.1.1 Detailed Description
	6.1.2 Enumeration Type Documentation
	6.1.2.1 ClientState
	6.1.2.2 PunLogLevel
	6.1.2.3 RpcTarget

	6.1.3 Function Documentation
	6.1.3.1 OnPhotonSerializeView()

	6.2 Optional Gui Elements
	6.2.1 Detailed Description

	6.3 Callbacks
	6.3.1 Detailed Description

	7 Namespace Documentation
	7.1 Photon Namespace Reference
	7.2 Photon.Chat Namespace Reference
	7.2.1 Enumeration Type Documentation
	7.2.1.1 ChatDisconnectCause
	7.2.1.2 ChatState
	7.2.1.3 CustomAuthenticationType

	7.3 Photon.Pun Namespace Reference
	7.3.1 Enumeration Type Documentation
	7.3.1.1 ConnectMethod
	7.3.1.2 OwnershipOption

	7.4 Photon.Pun.UtilityScripts Namespace Reference
	7.5 Photon.Realtime Namespace Reference
	7.5.1 Enumeration Type Documentation
	7.5.1.1 AuthModeOption
	7.5.1.2 ClientAppType
	7.5.1.3 CustomAuthenticationType
	7.5.1.4 DisconnectCause
	7.5.1.5 EncryptionMode
	7.5.1.6 EventCaching
	7.5.1.7 JoinMode
	7.5.1.8 LobbyType
	7.5.1.9 MatchmakingMode
	7.5.1.10 PropertyTypeFlag
	7.5.1.11 ReceiverGroup
	7.5.1.12 ServerConnection

	8 Class Documentation
	8.1 ActorProperties Class Reference
	8.1.1 Detailed Description
	8.1.2 Member Data Documentation
	8.1.2.1 IsInactive
	8.1.2.2 PlayerName
	8.1.2.3 UserId

	8.2 AppSettings Class Reference
	8.2.1 Detailed Description
	8.2.2 Member Function Documentation
	8.2.2.1 IsAppId()
	8.2.2.2 ToStringFull()

	8.2.3 Member Data Documentation
	8.2.3.1 AppIdChat
	8.2.3.2 AppIdFusion
	8.2.3.3 AppIdRealtime
	8.2.3.4 AppIdVoice
	8.2.3.5 AppVersion
	8.2.3.6 AuthMode
	8.2.3.7 BestRegionSummaryFromStorage
	8.2.3.8 EnableLobbyStatistics
	8.2.3.9 EnableProtocolFallback
	8.2.3.10 FixedRegion
	8.2.3.11 NetworkLogging
	8.2.3.12 Port
	8.2.3.13 Protocol
	8.2.3.14 ProxyServer
	8.2.3.15 Server
	8.2.3.16 UseNameServer

	8.2.4 Property Documentation
	8.2.4.1 IsBestRegion
	8.2.4.2 IsDefaultNameServer
	8.2.4.3 IsDefaultPort
	8.2.4.4 IsMasterServerAddress

	8.3 AuthenticationValues Class Reference
	8.3.1 Detailed Description
	8.3.2 Constructor & Destructor Documentation
	8.3.2.1 AuthenticationValues() [1/2]
	8.3.2.2 AuthenticationValues() [2/2]

	8.3.3 Member Function Documentation
	8.3.3.1 AddAuthParameter()
	8.3.3.2 CopyTo()
	8.3.3.3 SetAuthPostData() [1/3]
	8.3.3.4 SetAuthPostData() [2/3]
	8.3.3.5 SetAuthPostData() [3/3]
	8.3.3.6 ToString()

	8.3.4 Property Documentation
	8.3.4.1 AuthGetParameters
	8.3.4.2 AuthPostData
	8.3.4.3 AuthType
	8.3.4.4 Token
	8.3.4.5 UserId

	8.4 AuthenticationValues Class Reference
	8.4.1 Detailed Description
	8.4.2 Constructor & Destructor Documentation
	8.4.2.1 AuthenticationValues() [1/2]
	8.4.2.2 AuthenticationValues() [2/2]

	8.4.3 Member Function Documentation
	8.4.3.1 AddAuthParameter()
	8.4.3.2 CopyTo()
	8.4.3.3 SetAuthPostData() [1/3]
	8.4.3.4 SetAuthPostData() [2/3]
	8.4.3.5 SetAuthPostData() [3/3]
	8.4.3.6 ToString()

	8.4.4 Property Documentation
	8.4.4.1 AuthGetParameters
	8.4.4.2 AuthPostData
	8.4.4.3 AuthType
	8.4.4.4 Token
	8.4.4.5 UserId

	8.5 ButtonInsideScrollList Class Reference
	8.5.1 Detailed Description

	8.6 ByteComparer Class Reference
	8.7 CellTree Class Reference
	8.7.1 Detailed Description
	8.7.2 Constructor & Destructor Documentation
	8.7.2.1 CellTree() [1/2]
	8.7.2.2 CellTree() [2/2]

	8.7.3 Property Documentation
	8.7.3.1 RootNode

	8.8 CellTreeNode Class Reference
	8.8.1 Detailed Description
	8.8.2 Constructor & Destructor Documentation
	8.8.2.1 CellTreeNode() [1/2]
	8.8.2.2 CellTreeNode() [2/2]

	8.8.3 Member Function Documentation
	8.8.3.1 AddChild()
	8.8.3.2 Draw()
	8.8.3.3 GetActiveCells()
	8.8.3.4 IsPointInsideCell()
	8.8.3.5 IsPointNearCell()

	8.8.4 Member Data Documentation
	8.8.4.1 Center
	8.8.4.2 Childs
	8.8.4.3 Id
	8.8.4.4 NodeType
	8.8.4.5 Parent

	8.9 ChannelCreationOptions Class Reference
	8.9.1 Member Data Documentation
	8.9.1.1 Default

	8.9.2 Property Documentation
	8.9.2.1 MaxSubscribers
	8.9.2.2 PublishSubscribers

	8.10 ChannelWellKnownProperties Class Reference
	8.11 ChatAppSettings Class Reference
	8.11.1 Detailed Description
	8.11.2 Member Data Documentation
	8.11.2.1 AppIdChat
	8.11.2.2 AppVersion
	8.11.2.3 EnableProtocolFallback
	8.11.2.4 FixedRegion
	8.11.2.5 NetworkLogging
	8.11.2.6 Port
	8.11.2.7 Protocol
	8.11.2.8 Server

	8.11.3 Property Documentation
	8.11.3.1 AppId
	8.11.3.2 IsDefaultNameServer

	8.12 ChatChannel Class Reference
	8.12.1 Detailed Description
	8.12.2 Constructor & Destructor Documentation
	8.12.2.1 ChatChannel()

	8.12.3 Member Function Documentation
	8.12.3.1 Add() [1/2]
	8.12.3.2 Add() [2/2]
	8.12.3.3 ClearMessages()
	8.12.3.4 ToStringMessages()
	8.12.3.5 TruncateMessages()

	8.12.4 Member Data Documentation
	8.12.4.1 ChannelID
	8.12.4.2 MessageLimit
	8.12.4.3 Messages
	8.12.4.4 Name
	8.12.4.5 Senders
	8.12.4.6 Subscribers

	8.12.5 Property Documentation
	8.12.5.1 IsPrivate
	8.12.5.2 LastMsgId
	8.12.5.3 MaxSubscribers
	8.12.5.4 MessageCount
	8.12.5.5 PublishSubscribers

	8.13 ChatClient Class Reference
	8.13.1 Detailed Description
	8.13.2 Constructor & Destructor Documentation
	8.13.2.1 ChatClient()

	8.13.3 Member Function Documentation
	8.13.3.1 AddFriends()
	8.13.3.2 CanChatInChannel()
	8.13.3.3 Connect()
	8.13.3.4 ConnectAndSetStatus()
	8.13.3.5 Disconnect()
	8.13.3.6 GetPrivateChannelNameByUser()
	8.13.3.7 PublishMessage()
	8.13.3.8 RemoveFriends()
	8.13.3.9 SendAcksOnly()
	8.13.3.10 SendPrivateMessage() [1/2]
	8.13.3.11 SendPrivateMessage() [2/2]
	8.13.3.12 Service()
	8.13.3.13 SetOnlineStatus() [1/2]
	8.13.3.14 SetOnlineStatus() [2/2]
	8.13.3.15 StopThread()
	8.13.3.16 Subscribe() [1/4]
	8.13.3.17 Subscribe() [2/4]
	8.13.3.18 Subscribe() [3/4]
	8.13.3.19 Subscribe() [4/4]
	8.13.3.20 TryGetChannel() [1/2]
	8.13.3.21 TryGetChannel() [2/2]
	8.13.3.22 TryGetPrivateChannelByUser()
	8.13.3.23 Unsubscribe()

	8.13.4 Member Data Documentation
	8.13.4.1 chatPeer
	8.13.4.2 DefaultMaxSubscribers
	8.13.4.3 MessageLimit
	8.13.4.4 PrivateChannels
	8.13.4.5 PrivateChatHistoryLength
	8.13.4.6 PublicChannels

	8.13.5 Property Documentation
	8.13.5.1 AppId
	8.13.5.2 AppVersion
	8.13.5.3 AuthValues
	8.13.5.4 CanChat
	8.13.5.5 ChatRegion
	8.13.5.6 DebugOut
	8.13.5.7 DisconnectedCause
	8.13.5.8 EnableProtocolFallback
	8.13.5.9 FrontendAddress
	8.13.5.10 NameServerAddress
	8.13.5.11 SocketImplementationConfig
	8.13.5.12 State
	8.13.5.13 TransportProtocol
	8.13.5.14 UseBackgroundWorkerForSending
	8.13.5.15 UserId

	8.14 ChatEventCode Class Reference
	8.14.1 Detailed Description
	8.14.2 Member Data Documentation
	8.14.2.1 ChatMessages
	8.14.2.2 ErrorInfo
	8.14.2.3 FriendsList
	8.14.2.4 PrivateMessage
	8.14.2.5 PropertiesChanged
	8.14.2.6 StatusUpdate
	8.14.2.7 Subscribe
	8.14.2.8 Unsubscribe
	8.14.2.9 Users
	8.14.2.10 UserSubscribed
	8.14.2.11 UserUnsubscribed

	8.15 ChatOperationCode Class Reference
	8.15.1 Detailed Description
	8.15.2 Member Data Documentation
	8.15.2.1 AddFriends
	8.15.2.2 Authenticate
	8.15.2.3 ChannelHistory
	8.15.2.4 Publish
	8.15.2.5 RemoveFriends
	8.15.2.6 SendPrivate
	8.15.2.7 SetProperties
	8.15.2.8 Subscribe
	8.15.2.9 Unsubscribe
	8.15.2.10 UpdateStatus

	8.16 ChatParameterCode Class Reference
	8.16.1 Detailed Description
	8.16.2 Member Data Documentation
	8.16.2.1 Broadcast
	8.16.2.2 Channel
	8.16.2.3 Channels
	8.16.2.4 ChannelSubscribers
	8.16.2.5 ChannelUserCount
	8.16.2.6 DebugData
	8.16.2.7 ExpectedValues
	8.16.2.8 Friends
	8.16.2.9 HistoryLength
	8.16.2.10 Message
	8.16.2.11 Messages
	8.16.2.12 MsgId
	8.16.2.13 MsgIds
	8.16.2.14 Properties
	8.16.2.15 Secret
	8.16.2.16 Sender
	8.16.2.17 Senders
	8.16.2.18 SkipMessage
	8.16.2.19 Status
	8.16.2.20 SubscribeResults
	8.16.2.21 UniqueRoomId
	8.16.2.22 UserId
	8.16.2.23 UserProperties
	8.16.2.24 WebFlags

	8.17 ChatPeer Class Reference
	8.17.1 Detailed Description
	8.17.2 Constructor & Destructor Documentation
	8.17.2.1 ChatPeer()

	8.17.3 Member Function Documentation
	8.17.3.1 AuthenticateOnNameServer()
	8.17.3.2 Connect()

	8.17.4 Member Data Documentation
	8.17.4.1 NameServerHost
	8.17.4.2 NameServerPortOverride

	8.17.5 Property Documentation
	8.17.5.1 NameServerAddress

	8.18 ChatUserStatus Class Reference
	8.18.1 Detailed Description
	8.18.2 Member Data Documentation
	8.18.2.1 Away
	8.18.2.2 DND
	8.18.2.3 Invisible
	8.18.2.4 LFG
	8.18.2.5 Offline
	8.18.2.6 Online
	8.18.2.7 Playing

	8.19 ConnectAndJoinRandom Class Reference
	8.19.1 Detailed Description
	8.19.2 Member Function Documentation
	8.19.2.1 OnConnectedToMaster()
	8.19.2.2 OnDisconnected()
	8.19.2.3 OnJoinedLobby()
	8.19.2.4 OnJoinedRoom()
	8.19.2.5 OnJoinRandomFailed()

	8.19.3 Member Data Documentation
	8.19.3.1 AutoConnect
	8.19.3.2 MaxPlayers
	8.19.3.3 Version

	8.20 ConnectionCallbacksContainer Class Reference
	8.20.1 Detailed Description
	8.20.2 Member Function Documentation
	8.20.2.1 OnConnected()
	8.20.2.2 OnConnectedToMaster()
	8.20.2.3 OnCustomAuthenticationFailed()
	8.20.2.4 OnCustomAuthenticationResponse()
	8.20.2.5 OnDisconnected()
	8.20.2.6 OnRegionListReceived()

	8.21 ConnectionHandler Class Reference
	8.21.1 Member Function Documentation
	8.21.1.1 RealtimeFallbackThread()

	8.21.2 Member Data Documentation
	8.21.2.1 ApplyDontDestroyOnLoad
	8.21.2.2 AppQuits
	8.21.2.3 DisconnectAfterKeepAlive
	8.21.2.4 KeepAliveInBackground

	8.21.3 Property Documentation
	8.21.3.1 Client
	8.21.3.2 CountSendAcksOnly
	8.21.3.3 FallbackThreadRunning

	8.22 CountdownTimer Class Reference
	8.22.1 Detailed Description
	8.22.2 Member Function Documentation
	8.22.2.1 CountdownTimerHasExpired()
	8.22.2.2 OnRoomPropertiesUpdate()

	8.22.3 Event Documentation
	8.22.3.1 OnCountdownTimerHasExpired

	8.23 CullArea Class Reference
	8.23.1 Detailed Description
	8.23.2 Member Function Documentation
	8.23.2.1 GetActiveCells()
	8.23.2.2 OnDrawGizmos()

	8.23.3 Member Data Documentation
	8.23.3.1 FIRST_GROUP_ID
	8.23.3.2 SUBDIVISION_FIRST_LEVEL_ORDER
	8.23.3.3 SUBDIVISION_SECOND_LEVEL_ORDER
	8.23.3.4 SUBDIVISION_THIRD_LEVEL_ORDER

	8.24 CullingHandler Class Reference
	8.24.1 Detailed Description
	8.24.2 Member Function Documentation
	8.24.2.1 OnPhotonSerializeView()

	8.25 DefaultPool Class Reference
	8.25.1 Detailed Description
	8.25.2 Member Function Documentation
	8.25.2.1 Destroy()
	8.25.2.2 Instantiate()

	8.25.3 Member Data Documentation
	8.25.3.1 ResourceCache

	8.26 EnterRoomParams Class Reference
	8.26.1 Detailed Description
	8.26.2 Member Data Documentation
	8.26.2.1 ExpectedUsers
	8.26.2.2 Lobby
	8.26.2.3 PlayerProperties
	8.26.2.4 RoomName
	8.26.2.5 RoomOptions

	8.27 ErrorCode Class Reference
	8.27.1 Detailed Description
	8.27.2 Member Data Documentation
	8.27.2.1 AuthenticationTicketExpired
	8.27.2.2 CustomAuthenticationFailed
	8.27.2.3 ExternalHttpCallFailed
	8.27.2.4 GameClosed
	8.27.2.5 GameDoesNotExist
	8.27.2.6 GameFull
	8.27.2.7 GameIdAlreadyExists
	8.27.2.8 HttpLimitReached
	8.27.2.9 InternalServerError
	8.27.2.10 InvalidAuthentication
	8.27.2.11 InvalidEncryptionParameters
	8.27.2.12 InvalidOperation
	8.27.2.13 InvalidOperationCode
	8.27.2.14 InvalidRegion
	8.27.2.15 JoinFailedFoundActiveJoiner
	8.27.2.16 JoinFailedFoundExcludedUserId
	8.27.2.17 JoinFailedFoundInactiveJoiner
	8.27.2.18 JoinFailedPeerAlreadyJoined
	8.27.2.19 JoinFailedWithRejoinerNotFound
	8.27.2.20 MaxCcuReached
	8.27.2.21 NoRandomMatchFound
	8.27.2.22 Ok
	8.27.2.23 OperationLimitReached
	8.27.2.24 OperationNotAllowedInCurrentState
	8.27.2.25 PluginMismatch
	8.27.2.26 PluginReportedError
	8.27.2.27 ServerFull
	8.27.2.28 SlotError
	8.27.2.29 UserBlocked

	8.28 ErrorCode Class Reference
	8.28.1 Detailed Description
	8.28.2 Member Data Documentation
	8.28.2.1 AuthenticationTicketExpired
	8.28.2.2 CustomAuthenticationFailed
	8.28.2.3 GameClosed
	8.28.2.4 GameDoesNotExist
	8.28.2.5 GameFull
	8.28.2.6 GameIdAlreadyExists
	8.28.2.7 InternalServerError
	8.28.2.8 InvalidAuthentication
	8.28.2.9 InvalidOperationCode
	8.28.2.10 InvalidRegion
	8.28.2.11 MaxCcuReached
	8.28.2.12 NoRandomMatchFound
	8.28.2.13 Ok
	8.28.2.14 OperationNotAllowedInCurrentState
	8.28.2.15 ServerFull
	8.28.2.16 UserBlocked

	8.29 ErrorInfo Class Reference
	8.29.1 Detailed Description
	8.29.2 Member Data Documentation
	8.29.2.1 Info

	8.30 EventCode Class Reference
	8.30.1 Detailed Description
	8.30.2 Member Data Documentation
	8.30.2.1 AppStats
	8.30.2.2 AuthEvent
	8.30.2.3 AzureNodeInfo
	8.30.2.4 CacheSliceChanged
	8.30.2.5 ErrorInfo
	8.30.2.6 GameList
	8.30.2.7 GameListUpdate
	8.30.2.8 Join
	8.30.2.9 Leave
	8.30.2.10 LobbyStats
	8.30.2.11 Match
	8.30.2.12 PropertiesChanged
	8.30.2.13 QueueState
	8.30.2.14 SetProperties

	8.31 EventSystemSpawner Class Reference
	8.31.1 Detailed Description

	8.32 Extensions Class Reference
	8.32.1 Detailed Description
	8.32.2 Member Function Documentation
	8.32.2.1 Contains()
	8.32.2.2 Merge()
	8.32.2.3 MergeStringKeys()
	8.32.2.4 StripKeysWithNullValues() [1/2]
	8.32.2.5 StripKeysWithNullValues() [2/2]
	8.32.2.6 StripToStringKeys() [1/2]
	8.32.2.7 StripToStringKeys() [2/2]
	8.32.2.8 ToStringFull() [1/2]
	8.32.2.9 ToStringFull() [2/2]
	8.32.2.10 ToStringFull< T >()

	8.33 FindFriendsOptions Class Reference
	8.33.1 Detailed Description
	8.33.2 Member Data Documentation
	8.33.2.1 CreatedOnGs
	8.33.2.2 Open
	8.33.2.3 Visible

	8.34 FriendInfo Class Reference
	8.34.1 Detailed Description

	8.35 GamePropertyKey Class Reference
	8.35.1 Detailed Description
	8.35.2 Member Data Documentation
	8.35.2.1 CleanupCacheOnLeave
	8.35.2.2 EmptyRoomTtl
	8.35.2.3 ExpectedUsers
	8.35.2.4 IsOpen
	8.35.2.5 IsVisible
	8.35.2.6 MasterClientId
	8.35.2.7 MaxPlayers
	8.35.2.8 PlayerCount
	8.35.2.9 PlayerTtl
	8.35.2.10 PropsListedInLobby
	8.35.2.11 Removed

	8.36 GraphicToggleIsOnTransition Class Reference
	8.36.1 Detailed Description

	8.37 IChatClientListener Interface Reference
	8.37.1 Detailed Description
	8.37.2 Member Function Documentation
	8.37.2.1 DebugReturn()
	8.37.2.2 OnChatStateChange()
	8.37.2.3 OnConnected()
	8.37.2.4 OnDisconnected()
	8.37.2.5 OnGetMessages()
	8.37.2.6 OnPrivateMessage()
	8.37.2.7 OnStatusUpdate()
	8.37.2.8 OnSubscribed()
	8.37.2.9 OnUnsubscribed()
	8.37.2.10 OnUserSubscribed()
	8.37.2.11 OnUserUnsubscribed()

	8.38 IConnectionCallbacks Interface Reference
	8.38.1 Detailed Description
	8.38.2 Member Function Documentation
	8.38.2.1 OnConnected()
	8.38.2.2 OnConnectedToMaster()
	8.38.2.3 OnCustomAuthenticationFailed()
	8.38.2.4 OnCustomAuthenticationResponse()
	8.38.2.5 OnDisconnected()
	8.38.2.6 OnRegionListReceived()

	8.39 IErrorInfoCallback Interface Reference
	8.39.1 Detailed Description
	8.39.2 Member Function Documentation
	8.39.2.1 OnErrorInfo()

	8.40 IInRoomCallbacks Interface Reference
	8.40.1 Detailed Description
	8.40.2 Member Function Documentation
	8.40.2.1 OnMasterClientSwitched()
	8.40.2.2 OnPlayerEnteredRoom()
	8.40.2.3 OnPlayerLeftRoom()
	8.40.2.4 OnPlayerPropertiesUpdate()
	8.40.2.5 OnRoomPropertiesUpdate()

	8.41 ILobbyCallbacks Interface Reference
	8.41.1 Detailed Description
	8.41.2 Member Function Documentation
	8.41.2.1 OnJoinedLobby()
	8.41.2.2 OnLeftLobby()
	8.41.2.3 OnLobbyStatisticsUpdate()
	8.41.2.4 OnRoomListUpdate()

	8.42 IMatchmakingCallbacks Interface Reference
	8.42.1 Detailed Description
	8.42.2 Member Function Documentation
	8.42.2.1 OnCreatedRoom()
	8.42.2.2 OnCreateRoomFailed()
	8.42.2.3 OnFriendListUpdate()
	8.42.2.4 OnJoinedRoom()
	8.42.2.5 OnJoinRandomFailed()
	8.42.2.6 OnJoinRoomFailed()
	8.42.2.7 OnLeftRoom()

	8.43 InstantiateParameters Struct Reference
	8.44 IOnEventCallback Interface Reference
	8.44.1 Detailed Description
	8.44.2 Member Function Documentation
	8.44.2.1 OnEvent()

	8.45 IOnPhotonViewControllerChange Interface Reference
	8.45.1 Detailed Description
	8.45.2 Member Function Documentation
	8.45.2.1 OnControllerChange()

	8.46 IOnPhotonViewOwnerChange Interface Reference
	8.46.1 Detailed Description
	8.46.2 Member Function Documentation
	8.46.2.1 OnOwnerChange()

	8.47 IOnPhotonViewPreNetDestroy Interface Reference
	8.47.1 Detailed Description
	8.47.2 Member Function Documentation
	8.47.2.1 OnPreNetDestroy()

	8.48 IPhotonViewCallback Interface Reference
	8.48.1 Detailed Description

	8.49 IPunInstantiateMagicCallback Interface Reference
	8.50 IPunObservable Interface Reference
	8.50.1 Detailed Description

	8.51 IPunOwnershipCallbacks Interface Reference
	8.51.1 Detailed Description
	8.51.2 Member Function Documentation
	8.51.2.1 OnOwnershipRequest()
	8.51.2.2 OnOwnershipTransfered()
	8.51.2.3 OnOwnershipTransferFailed()

	8.52 IPunPrefabPool Interface Reference
	8.52.1 Detailed Description
	8.52.2 Member Function Documentation
	8.52.2.1 Destroy()
	8.52.2.2 Instantiate()

	8.53 IPunTurnManagerCallbacks Interface Reference
	8.53.1 Member Function Documentation
	8.53.1.1 OnPlayerFinished()
	8.53.1.2 OnPlayerMove()
	8.53.1.3 OnTurnBegins()
	8.53.1.4 OnTurnCompleted()
	8.53.1.5 OnTurnTimeEnds()

	8.54 IWebRpcCallback Interface Reference
	8.54.1 Detailed Description
	8.54.2 Member Function Documentation
	8.54.2.1 OnWebRpcResponse()

	8.55 LoadBalancingClient Class Reference
	8.55.1 Detailed Description
	8.55.2 Constructor & Destructor Documentation
	8.55.2.1 LoadBalancingClient() [1/2]
	8.55.2.2 LoadBalancingClient() [2/2]

	8.55.3 Member Function Documentation
	8.55.3.1 AddCallbackTarget()
	8.55.3.2 ChangeLocalID()
	8.55.3.3 ConnectToMasterServer()
	8.55.3.4 ConnectToNameServer()
	8.55.3.5 ConnectToRegionMaster()
	8.55.3.6 DebugReturn()
	8.55.3.7 Disconnect()
	8.55.3.8 OnEvent()
	8.55.3.9 OnMessage()
	8.55.3.10 OnOperationResponse()
	8.55.3.11 OnStatusChanged()
	8.55.3.12 OpChangeGroups()
	8.55.3.13 OpCreateRoom()
	8.55.3.14 OpFindFriends()
	8.55.3.15 OpGetGameList()
	8.55.3.16 OpJoinLobby()
	8.55.3.17 OpJoinOrCreateRoom()
	8.55.3.18 OpJoinRandomOrCreateRoom()
	8.55.3.19 OpJoinRandomRoom()
	8.55.3.20 OpJoinRoom()
	8.55.3.21 OpLeaveLobby()
	8.55.3.22 OpLeaveRoom()
	8.55.3.23 OpRaiseEvent()
	8.55.3.24 OpRejoinRoom()
	8.55.3.25 OpSetCustomPropertiesOfActor()
	8.55.3.26 OpSetCustomPropertiesOfRoom()
	8.55.3.27 OpWebRpc()
	8.55.3.28 ReconnectAndRejoin()
	8.55.3.29 ReconnectToMaster()
	8.55.3.30 RemoveCallbackTarget()
	8.55.3.31 Service()
	8.55.3.32 SimulateConnectionLoss()

	8.55.4 Member Data Documentation
	8.55.4.1 AuthMode
	8.55.4.2 ConnectionCallbackTargets
	8.55.4.3 EnableLobbyStatistics
	8.55.4.4 EncryptionMode
	8.55.4.5 MatchMakingCallbackTargets
	8.55.4.6 NameServerHost
	8.55.4.7 ProxyServerAddress
	8.55.4.8 RegionHandler
	8.55.4.9 ServerPortOverrides
	8.55.4.10 SummaryToCache

	8.55.5 Property Documentation
	8.55.5.1 AppId
	8.55.5.2 AppVersion
	8.55.5.3 AuthValues
	8.55.5.4 ClientType
	8.55.5.5 CloudRegion
	8.55.5.6 CurrentCluster
	8.55.5.7 CurrentLobby
	8.55.5.8 CurrentRoom
	8.55.5.9 CurrentServerAddress
	8.55.5.10 DisconnectedCause
	8.55.5.11 EnableProtocolFallback
	8.55.5.12 ExpectedProtocol
	8.55.5.13 GameServerAddress
	8.55.5.14 InLobby
	8.55.5.15 InRoom
	8.55.5.16 IsConnected
	8.55.5.17 IsConnectedAndReady
	8.55.5.18 IsFetchingFriendList
	8.55.5.19 IsUsingNameServer
	8.55.5.20 LoadBalancingPeer
	8.55.5.21 LocalPlayer
	8.55.5.22 MasterServerAddress
	8.55.5.23 NameServerAddress
	8.55.5.24 NickName
	8.55.5.25 PlayersInRoomsCount
	8.55.5.26 PlayersOnMasterCount
	8.55.5.27 RoomsCount
	8.55.5.28 SerializationProtocol
	8.55.5.29 Server
	8.55.5.30 State
	8.55.5.31 UseAlternativeUdpPorts
	8.55.5.32 UserId

	8.55.6 Event Documentation
	8.55.6.1 EventReceived
	8.55.6.2 OpResponseReceived
	8.55.6.3 StateChanged

	8.56 LoadBalancingPeer Class Reference
	8.56.1 Detailed Description
	8.56.2 Constructor & Destructor Documentation
	8.56.2.1 LoadBalancingPeer() [1/2]
	8.56.2.2 LoadBalancingPeer() [2/2]

	8.56.3 Member Function Documentation
	8.56.3.1 OpAuthenticate()
	8.56.3.2 OpAuthenticateOnce()
	8.56.3.3 OpChangeGroups()
	8.56.3.4 OpCreateRoom()
	8.56.3.5 OpFindFriends()
	8.56.3.6 OpGetGameList()
	8.56.3.7 OpJoinLobby()
	8.56.3.8 OpJoinRandomOrCreateRoom()
	8.56.3.9 OpJoinRandomRoom()
	8.56.3.10 OpJoinRoom()
	8.56.3.11 OpLeaveLobby()
	8.56.3.12 OpLeaveRoom()
	8.56.3.13 OpRaiseEvent()
	8.56.3.14 OpSettings()

	8.57 MatchMakingCallbacksContainer Class Reference
	8.57.1 Detailed Description
	8.57.2 Member Function Documentation
	8.57.2.1 OnCreatedRoom()
	8.57.2.2 OnCreateRoomFailed()
	8.57.2.3 OnFriendListUpdate()
	8.57.2.4 OnJoinedRoom()
	8.57.2.5 OnJoinRandomFailed()
	8.57.2.6 OnJoinRoomFailed()
	8.57.2.7 OnLeftRoom()

	8.58 MonoBehaviourPun Class Reference
	8.58.1 Detailed Description
	8.58.2 Property Documentation
	8.58.2.1 photonView

	8.59 MonoBehaviourPunCallbacks Class Reference
	8.59.1 Detailed Description
	8.59.2 Member Function Documentation
	8.59.2.1 OnConnected()
	8.59.2.2 OnConnectedToMaster()
	8.59.2.3 OnCreatedRoom()
	8.59.2.4 OnCreateRoomFailed()
	8.59.2.5 OnCustomAuthenticationFailed()
	8.59.2.6 OnCustomAuthenticationResponse()
	8.59.2.7 OnDisconnected()
	8.59.2.8 OnErrorInfo()
	8.59.2.9 OnFriendListUpdate()
	8.59.2.10 OnJoinedLobby()
	8.59.2.11 OnJoinedRoom()
	8.59.2.12 OnJoinRandomFailed()
	8.59.2.13 OnJoinRoomFailed()
	8.59.2.14 OnLeftLobby()
	8.59.2.15 OnLeftRoom()
	8.59.2.16 OnLobbyStatisticsUpdate()
	8.59.2.17 OnMasterClientSwitched()
	8.59.2.18 OnPlayerEnteredRoom()
	8.59.2.19 OnPlayerLeftRoom()
	8.59.2.20 OnPlayerPropertiesUpdate()
	8.59.2.21 OnRegionListReceived()
	8.59.2.22 OnRoomListUpdate()
	8.59.2.23 OnRoomPropertiesUpdate()
	8.59.2.24 OnWebRpcResponse()

	8.60 MoveByKeys Class Reference
	8.60.1 Detailed Description

	8.61 NestedComponentUtilities Class Reference
	8.61.1 Member Function Documentation
	8.61.1.1 GetNestedComponentInParent< T, NestedT >()
	8.61.1.2 GetNestedComponentInParents< T, NestedT >()
	8.61.1.3 GetNestedComponentsInChildren< T >()
	8.61.1.4 GetNestedComponentsInChildren< T, NestedT >()
	8.61.1.5 GetNestedComponentsInChildren< T, SearchT, NestedT >()
	8.61.1.6 GetNestedComponentsInParents< T >()
	8.61.1.7 GetNestedComponentsInParents< T, NestedT >()
	8.61.1.8 GetParentComponent< T >()

	8.62 OnClickDestroy Class Reference
	8.62.1 Detailed Description

	8.63 OnClickInstantiate Class Reference
	8.63.1 Detailed Description

	8.64 OnClickRpc Class Reference
	8.64.1 Detailed Description

	8.65 OnEscapeQuit Class Reference
	8.65.1 Detailed Description

	8.66 OnJoinedInstantiate Class Reference
	8.66.1 Detailed Description
	8.66.2 Member Function Documentation
	8.66.2.1 DespawnObjects()
	8.66.2.2 GetRandomOffset()
	8.66.2.3 GetSpawnPoint() [1/2]
	8.66.2.4 GetSpawnPoint() [2/2]
	8.66.2.5 OnCreatedRoom()
	8.66.2.6 OnCreateRoomFailed()
	8.66.2.7 OnFriendListUpdate()
	8.66.2.8 OnJoinedRoom()
	8.66.2.9 OnJoinRandomFailed()
	8.66.2.10 OnJoinRoomFailed()
	8.66.2.11 OnLeftRoom()

	8.67 OnPointerOverTooltip Class Reference
	8.67.1 Detailed Description

	8.68 OnStartDelete Class Reference
	8.68.1 Detailed Description

	8.69 OperationCode Class Reference
	8.69.1 Detailed Description
	8.69.2 Member Data Documentation
	8.69.2.1 Authenticate
	8.69.2.2 AuthenticateOnce
	8.69.2.3 ChangeGroups
	8.69.2.4 CreateGame
	8.69.2.5 FindFriends
	8.69.2.6 GetGameList
	8.69.2.7 GetLobbyStats
	8.69.2.8 GetProperties
	8.69.2.9 GetRegions
	8.69.2.10 Join
	8.69.2.11 JoinGame
	8.69.2.12 JoinLobby
	8.69.2.13 JoinRandomGame
	8.69.2.14 Leave
	8.69.2.15 LeaveLobby
	8.69.2.16 RaiseEvent
	8.69.2.17 ServerSettings
	8.69.2.18 SetProperties
	8.69.2.19 WebRpc

	8.70 OpJoinRandomRoomParams Class Reference
	8.70.1 Detailed Description
	8.70.2 Member Data Documentation
	8.70.2.1 ExpectedCustomRoomProperties
	8.70.2.2 ExpectedMaxPlayers
	8.70.2.3 ExpectedUsers
	8.70.2.4 MatchingType
	8.70.2.5 SqlLobbyFilter
	8.70.2.6 TypedLobby

	8.71 ParameterCode Class Reference
	8.71.1 Detailed Description
	8.71.2 Member Data Documentation
	8.71.2.1 Address
	8.71.2.2 ApplicationId
	8.71.2.3 AppVersion
	8.71.2.4 ClientAuthenticationData
	8.71.2.5 ClientAuthenticationParams
	8.71.2.6 ClientAuthenticationType
	8.71.2.7 Region
	8.71.2.8 Secret
	8.71.2.9 UserId

	8.72 ParameterCode Class Reference
	8.72.1 Detailed Description
	8.72.2 Member Data Documentation
	8.72.2.1 ActorList
	8.72.2.2 ActorNr
	8.72.2.3 Add
	8.72.2.4 Address
	8.72.2.5 ApplicationId
	8.72.2.6 AppVersion
	8.72.2.7 AzureLocalNodeId
	8.72.2.8 AzureMasterNodeId
	8.72.2.9 AzureNodeInfo
	8.72.2.10 Broadcast
	8.72.2.11 Cache
	8.72.2.12 CacheSliceIndex
	8.72.2.13 CheckUserOnJoin
	8.72.2.14 CleanupCacheOnLeave
	8.72.2.15 ClientAuthenticationData
	8.72.2.16 ClientAuthenticationParams
	8.72.2.17 ClientAuthenticationType
	8.72.2.18 Cluster
	8.72.2.19 Code
	8.72.2.20 CustomEventContent
	8.72.2.21 CustomInitData
	8.72.2.22 Data
	8.72.2.23 EmptyRoomTTL
	8.72.2.24 EncryptionData
	8.72.2.25 EncryptionMode
	8.72.2.26 EventForward
	8.72.2.27 ExpectedProtocol
	8.72.2.28 ExpectedValues
	8.72.2.29 FindFriendsOptions
	8.72.2.30 FindFriendsRequestList
	8.72.2.31 FindFriendsResponseOnlineList
	8.72.2.32 FindFriendsResponseRoomIdList
	8.72.2.33 GameCount
	8.72.2.34 GameList
	8.72.2.35 GameProperties
	8.72.2.36 Group
	8.72.2.37 Info
	8.72.2.38 IsComingBack
	8.72.2.39 IsInactive
	8.72.2.40 JoinMode
	8.72.2.41 LobbyName
	8.72.2.42 LobbyStats
	8.72.2.43 LobbyType
	8.72.2.44 MasterClientId
	8.72.2.45 MasterPeerCount
	8.72.2.46 MatchMakingType
	8.72.2.47 NickName
	8.72.2.48 PeerCount
	8.72.2.49 PlayerProperties
	8.72.2.50 PlayerTTL
	8.72.2.51 PluginName
	8.72.2.52 Plugins
	8.72.2.53 PluginVersion
	8.72.2.54 Position
	8.72.2.55 Properties
	8.72.2.56 PublishUserId
	8.72.2.57 ReceiverGroup
	8.72.2.58 Region
	8.72.2.59 Remove
	8.72.2.60 RoomName
	8.72.2.61 RoomOptionFlags
	8.72.2.62 SuppressRoomEvents
	8.72.2.63 TargetActorNr
	8.72.2.64 Token
	8.72.2.65 UriPath
	8.72.2.66 UserId
	8.72.2.67 WebRpcParameters
	8.72.2.68 WebRpcReturnCode
	8.72.2.69 WebRpcReturnMessage

	8.73 PhotonAnimatorView Class Reference
	8.73.1 Detailed Description
	8.73.2 Member Function Documentation
	8.73.2.1 CacheDiscreteTriggers()
	8.73.2.2 DoesLayerSynchronizeTypeExist()
	8.73.2.3 DoesParameterSynchronizeTypeExist()
	8.73.2.4 GetLayerSynchronizeType()
	8.73.2.5 GetParameterSynchronizeType()
	8.73.2.6 GetSynchronizedLayers()
	8.73.2.7 GetSynchronizedParameters()
	8.73.2.8 OnPhotonSerializeView()
	8.73.2.9 SetLayerSynchronized()
	8.73.2.10 SetParameterSynchronized()

	8.74 PhotonAppSettings Class Reference
	8.74.1 Detailed Description
	8.74.2 Property Documentation
	8.74.2.1 Instance

	8.75 PhotonHandler Class Reference
	8.75.1 Detailed Description
	8.75.2 Member Function Documentation
	8.75.2.1 Dispatch()
	8.75.2.2 FixedUpdate()
	8.75.2.3 LateUpdate()
	8.75.2.4 OnCreatedRoom()
	8.75.2.5 OnCreateRoomFailed()
	8.75.2.6 OnJoinedRoom()
	8.75.2.7 OnJoinRandomFailed()
	8.75.2.8 OnJoinRoomFailed()
	8.75.2.9 OnLeftRoom()
	8.75.2.10 OnMasterClientSwitched()
	8.75.2.11 OnPlayerEnteredRoom()
	8.75.2.12 OnPlayerLeftRoom()
	8.75.2.13 OnPlayerPropertiesUpdate()
	8.75.2.14 OnRoomPropertiesUpdate()

	8.75.3 Member Data Documentation
	8.75.3.1 MaxDatagrams
	8.75.3.2 SendAsap

	8.76 PhotonLagSimulationGui Class Reference
	8.76.1 Detailed Description
	8.76.2 Member Data Documentation
	8.76.2.1 Visible
	8.76.2.2 WindowId
	8.76.2.3 WindowRect

	8.76.3 Property Documentation
	8.76.3.1 Peer

	8.77 PhotonMessageInfo Struct Reference
	8.77.1 Detailed Description
	8.77.2 Member Data Documentation
	8.77.2.1 Sender

	8.78 PhotonNetwork Class Reference
	8.78.1 Detailed Description
	8.78.2 Member Function Documentation
	8.78.2.1 AddCallbackTarget()
	8.78.2.2 AllocateRoomViewID()
	8.78.2.3 AllocateViewID() [1/3]
	8.78.2.4 AllocateViewID() [2/3]
	8.78.2.5 AllocateViewID() [3/3]
	8.78.2.6 CloseConnection()
	8.78.2.7 ConnectToBestCloudServer()
	8.78.2.8 ConnectToMaster()
	8.78.2.9 ConnectToRegion()
	8.78.2.10 ConnectUsingSettings()
	8.78.2.11 CreateRoom()
	8.78.2.12 Destroy() [1/2]
	8.78.2.13 Destroy() [2/2]
	8.78.2.14 DestroyAll()
	8.78.2.15 DestroyPlayerObjects() [1/3]
	8.78.2.16 DestroyPlayerObjects() [2/3]
	8.78.2.17 DestroyPlayerObjects() [3/3]
	8.78.2.18 Disconnect()
	8.78.2.19 FetchServerTimestamp()
	8.78.2.20 FindFriends()
	8.78.2.21 FindGameObjectsWithComponent()
	8.78.2.22 GetCustomRoomList()
	8.78.2.23 GetPing()
	8.78.2.24 JoinLobby() [1/2]
	8.78.2.25 JoinLobby() [2/2]
	8.78.2.26 JoinOrCreateRoom()
	8.78.2.27 JoinRandomOrCreateRoom()
	8.78.2.28 JoinRandomRoom() [1/3]
	8.78.2.29 JoinRandomRoom() [2/3]
	8.78.2.30 JoinRandomRoom() [3/3]
	8.78.2.31 JoinRoom()
	8.78.2.32 LeaveLobby()
	8.78.2.33 LeaveRoom()
	8.78.2.34 LoadLevel() [1/2]
	8.78.2.35 LoadLevel() [2/2]
	8.78.2.36 NetworkStatisticsReset()
	8.78.2.37 NetworkStatisticsToString()
	8.78.2.38 OpCleanActorRpcBuffer()
	8.78.2.39 OpCleanRpcBuffer()
	8.78.2.40 OpRemoveCompleteCacheOfPlayer()
	8.78.2.41 RaiseEvent()
	8.78.2.42 Reconnect()
	8.78.2.43 ReconnectAndRejoin()
	8.78.2.44 RejoinRoom()
	8.78.2.45 RemoveBufferedRPCs()
	8.78.2.46 RemoveCallbackTarget()
	8.78.2.47 RemovePlayerCustomProperties()
	8.78.2.48 RemoveRPCs() [1/2]
	8.78.2.49 RemoveRPCs() [2/2]
	8.78.2.50 RemoveRPCsInGroup()
	8.78.2.51 SendAllOutgoingCommands()
	8.78.2.52 SetInterestGroups() [1/2]
	8.78.2.53 SetInterestGroups() [2/2]
	8.78.2.54 SetLevelPrefix()
	8.78.2.55 SetMasterClient()
	8.78.2.56 SetPlayerCustomProperties()
	8.78.2.57 SetSendingEnabled() [1/2]
	8.78.2.58 SetSendingEnabled() [2/2]
	8.78.2.59 WebRpc()

	8.78.3 Member Data Documentation
	8.78.3.1 ConnectMethod
	8.78.3.2 EnableCloseConnection
	8.78.3.3 LogLevel
	8.78.3.4 MAX_VIEW_IDS
	8.78.3.5 MinimalTimeScaleToDispatchInFixedUpdate
	8.78.3.6 NetworkingClient
	8.78.3.7 ObjectsInOneUpdate
	8.78.3.8 PrecisionForFloatSynchronization
	8.78.3.9 PrecisionForQuaternionSynchronization
	8.78.3.10 PrecisionForVectorSynchronization
	8.78.3.11 PunVersion
	8.78.3.12 RunRpcCoroutines
	8.78.3.13 ServerSettingsFileName
	8.78.3.14 UseRpcMonoBehaviourCache

	8.78.4 Property Documentation
	8.78.4.1 AppVersion
	8.78.4.2 AuthValues
	8.78.4.3 AutomaticallySyncScene
	8.78.4.4 BestRegionSummaryInPreferences
	8.78.4.5 CloudRegion
	8.78.4.6 CountOfPlayers
	8.78.4.7 CountOfPlayersInRooms
	8.78.4.8 CountOfPlayersOnMaster
	8.78.4.9 CountOfRooms
	8.78.4.10 CrcCheckEnabled
	8.78.4.11 CurrentCluster
	8.78.4.12 CurrentLobby
	8.78.4.13 CurrentRoom
	8.78.4.14 EnableLobbyStatistics
	8.78.4.15 GameVersion
	8.78.4.16 InLobby
	8.78.4.17 InRoom
	8.78.4.18 IsConnected
	8.78.4.19 IsConnectedAndReady
	8.78.4.20 IsMasterClient
	8.78.4.21 IsMessageQueueRunning
	8.78.4.22 KeepAliveInBackground
	8.78.4.23 LevelLoadingProgress
	8.78.4.24 LocalPlayer
	8.78.4.25 MasterClient
	8.78.4.26 MaxResendsBeforeDisconnect
	8.78.4.27 NetworkClientState
	8.78.4.28 NetworkStatisticsEnabled
	8.78.4.29 NickName
	8.78.4.30 OfflineMode
	8.78.4.31 PacketLossByCrcCheck
	8.78.4.32 PhotonServerSettings
	8.78.4.33 PhotonViewCollection
	8.78.4.34 PhotonViews
	8.78.4.35 PlayerList
	8.78.4.36 PlayerListOthers
	8.78.4.37 PrefabPool
	8.78.4.38 QuickResends
	8.78.4.39 ResentReliableCommands
	8.78.4.40 SendRate
	8.78.4.41 SerializationRate
	8.78.4.42 Server
	8.78.4.43 ServerAddress
	8.78.4.44 ServerPortOverrides
	8.78.4.45 ServerTimestamp
	8.78.4.46 Time
	8.78.4.47 UseAlternativeUdpPorts

	8.79 PhotonPing Class Reference
	8.79.1 Detailed Description

	8.80 PhotonPortDefinition Struct Reference
	8.80.1 Detailed Description
	8.80.2 Member Data Documentation
	8.80.2.1 GameServerPort
	8.80.2.2 MasterServerPort
	8.80.2.3 NameServerPort

	8.81 PhotonRigidbody2DView Class Reference
	8.81.1 Member Function Documentation
	8.81.1.1 OnPhotonSerializeView()

	8.82 PhotonRigidbodyView Class Reference
	8.82.1 Member Function Documentation
	8.82.1.1 OnPhotonSerializeView()

	8.83 PhotonStatsGui Class Reference
	8.83.1 Detailed Description
	8.83.2 Member Function Documentation
	8.83.2.1 Update()

	8.83.3 Member Data Documentation
	8.83.3.1 buttonsOn
	8.83.3.2 healthStatsVisible
	8.83.3.3 statsOn
	8.83.3.4 statsRect
	8.83.3.5 statsWindowOn
	8.83.3.6 trafficStatsOn
	8.83.3.7 WindowId

	8.84 PhotonStream Class Reference
	8.84.1 Detailed Description
	8.84.2 Constructor & Destructor Documentation
	8.84.2.1 PhotonStream()

	8.84.3 Member Function Documentation
	8.84.3.1 PeekNext()
	8.84.3.2 ReceiveNext()
	8.84.3.3 SendNext()
	8.84.3.4 Serialize() [1/10]
	8.84.3.5 Serialize() [2/10]
	8.84.3.6 Serialize() [3/10]
	8.84.3.7 Serialize() [4/10]
	8.84.3.8 Serialize() [5/10]
	8.84.3.9 Serialize() [6/10]
	8.84.3.10 Serialize() [7/10]
	8.84.3.11 Serialize() [8/10]
	8.84.3.12 Serialize() [9/10]
	8.84.3.13 Serialize() [10/10]
	8.84.3.14 ToArray()

	8.84.4 Property Documentation
	8.84.4.1 Count
	8.84.4.2 IsReading
	8.84.4.3 IsWriting

	8.85 PhotonStreamQueue Class Reference
	8.85.1 Detailed Description
	8.85.2 Constructor & Destructor Documentation
	8.85.2.1 PhotonStreamQueue()

	8.85.3 Member Function Documentation
	8.85.3.1 Deserialize()
	8.85.3.2 HasQueuedObjects()
	8.85.3.3 ReceiveNext()
	8.85.3.4 Reset()
	8.85.3.5 SendNext()
	8.85.3.6 Serialize()

	8.86 PhotonTeam Class Reference
	8.87 PhotonTeamExtensions Class Reference
	8.87.1 Detailed Description
	8.87.2 Member Function Documentation
	8.87.2.1 GetPhotonTeam()
	8.87.2.2 JoinTeam() [1/3]
	8.87.2.3 JoinTeam() [2/3]
	8.87.2.4 JoinTeam() [3/3]
	8.87.2.5 LeaveCurrentTeam()
	8.87.2.6 SwitchTeam() [1/3]
	8.87.2.7 SwitchTeam() [2/3]
	8.87.2.8 SwitchTeam() [3/3]
	8.87.2.9 TryGetTeamMates()

	8.88 PhotonTeamsManager Class Reference
	8.88.1 Detailed Description
	8.88.2 Member Function Documentation
	8.88.2.1 GetAvailableTeams()
	8.88.2.2 GetTeamMembersCount() [1/3]
	8.88.2.3 GetTeamMembersCount() [2/3]
	8.88.2.4 GetTeamMembersCount() [3/3]
	8.88.2.5 TryGetTeamByCode()
	8.88.2.6 TryGetTeamByName()
	8.88.2.7 TryGetTeamMatesOfPlayer()
	8.88.2.8 TryGetTeamMembers() [1/3]
	8.88.2.9 TryGetTeamMembers() [2/3]
	8.88.2.10 TryGetTeamMembers() [3/3]

	8.88.3 Member Data Documentation
	8.88.3.1 TeamPlayerProp

	8.89 PhotonTransformView Class Reference
	8.89.1 Member Function Documentation
	8.89.1.1 OnPhotonSerializeView()

	8.90 PhotonTransformViewClassic Class Reference
	8.90.1 Detailed Description
	8.90.2 Member Function Documentation
	8.90.2.1 OnPhotonSerializeView()
	8.90.2.2 SetSynchronizedValues()

	8.91 PhotonTransformViewPositionControl Class Reference
	8.91.1 Member Function Documentation
	8.91.1.1 GetExtrapolatedPositionOffset()
	8.91.1.2 GetNetworkPosition()
	8.91.1.3 SetSynchronizedValues()
	8.91.1.4 UpdatePosition()

	8.92 PhotonTransformViewPositionModel Class Reference
	8.93 PhotonTransformViewRotationControl Class Reference
	8.93.1 Member Function Documentation
	8.93.1.1 GetNetworkRotation()

	8.94 PhotonTransformViewRotationModel Class Reference
	8.95 PhotonTransformViewScaleControl Class Reference
	8.95.1 Member Function Documentation
	8.95.1.1 GetNetworkScale()

	8.96 PhotonTransformViewScaleModel Class Reference
	8.97 PhotonView Class Reference
	8.97.1 Detailed Description
	8.97.2 Member Function Documentation
	8.97.2.1 AddCallback< T >()
	8.97.2.2 AddCallbackTarget()
	8.97.2.3 Find()
	8.97.2.4 FindObservables()
	8.97.2.5 RefreshRpcMonoBehaviourCache()
	8.97.2.6 RemoveCallback< T >()
	8.97.2.7 RemoveCallbackTarget()
	8.97.2.8 RequestOwnership()
	8.97.2.9 RPC() [1/2]
	8.97.2.10 RPC() [2/2]
	8.97.2.11 RpcSecure() [1/2]
	8.97.2.12 RpcSecure() [2/2]
	8.97.2.13 TransferOwnership() [1/2]
	8.97.2.14 TransferOwnership() [2/2]

	8.97.3 Member Data Documentation
	8.97.3.1 OwnershipTransfer

	8.97.4 Property Documentation
	8.97.4.1 InstantiationData
	8.97.4.2 IsMine
	8.97.4.3 IsRoomView
	8.97.4.4 Owner
	8.97.4.5 ViewID

	8.98 PingMono Class Reference
	8.98.1 Detailed Description
	8.98.2 Member Function Documentation
	8.98.2.1 StartPing()

	8.99 Player Class Reference
	8.99.1 Detailed Description
	8.99.2 Member Function Documentation
	8.99.2.1 Equals()
	8.99.2.2 Get()
	8.99.2.3 GetHashCode()
	8.99.2.4 GetNext()
	8.99.2.5 GetNextFor() [1/2]
	8.99.2.6 GetNextFor() [2/2]
	8.99.2.7 SetCustomProperties()
	8.99.2.8 ToString()
	8.99.2.9 ToStringFull()

	8.99.3 Member Data Documentation
	8.99.3.1 IsLocal
	8.99.3.2 TagObject

	8.99.4 Property Documentation
	8.99.4.1 ActorNumber
	8.99.4.2 CustomProperties
	8.99.4.3 IsInactive
	8.99.4.4 IsMasterClient
	8.99.4.5 NickName
	8.99.4.6 UserId

	8.100 PlayerNumbering Class Reference
	8.100.1 Detailed Description
	8.100.2 Member Function Documentation
	8.100.2.1 OnJoinedRoom()
	8.100.2.2 OnLeftRoom()
	8.100.2.3 OnPlayerEnteredRoom()
	8.100.2.4 OnPlayerLeftRoom()
	8.100.2.5 OnPlayerPropertiesUpdate()
	8.100.2.6 PlayerNumberingChanged()
	8.100.2.7 RefreshData()

	8.100.3 Member Data Documentation
	8.100.3.1 dontDestroyOnLoad
	8.100.3.2 instance
	8.100.3.3 RoomPlayerIndexedProp

	8.100.4 Event Documentation
	8.100.4.1 OnPlayerNumberingChanged

	8.101 PlayerNumberingExtensions Class Reference
	8.101.1 Detailed Description
	8.101.2 Member Function Documentation
	8.101.2.1 GetPlayerNumber()
	8.101.2.2 SetPlayerNumber()

	8.102 PointedAtGameObjectInfo Class Reference
	8.102.1 Detailed Description

	8.103 PunExtensions Class Reference
	8.103.1 Detailed Description
	8.103.2 Member Function Documentation
	8.103.2.1 AlmostEquals() [1/4]
	8.103.2.2 AlmostEquals() [2/4]
	8.103.2.3 AlmostEquals() [3/4]
	8.103.2.4 AlmostEquals() [4/4]

	8.104 PunPlayerScores Class Reference
	8.104.1 Detailed Description

	8.105 PunRPC Class Reference
	8.105.1 Detailed Description

	8.106 PunTeams Class Reference
	8.106.1 Detailed Description
	8.106.2 Member Enumeration Documentation
	8.106.2.1 Team

	8.106.3 Member Function Documentation
	8.106.3.1 OnJoinedRoom()
	8.106.3.2 OnLeftRoom()
	8.106.3.3 OnPlayerEnteredRoom()
	8.106.3.4 OnPlayerLeftRoom()
	8.106.3.5 OnPlayerPropertiesUpdate()

	8.106.4 Member Data Documentation
	8.106.4.1 PlayersPerTeam
	8.106.4.2 TeamPlayerProp

	8.107 PunTurnManager Class Reference
	8.107.1 Detailed Description
	8.107.2 Member Function Documentation
	8.107.2.1 BeginTurn()
	8.107.2.2 GetPlayerFinishedTurn()
	8.107.2.3 OnEvent()
	8.107.2.4 OnRoomPropertiesUpdate()
	8.107.2.5 SendMove()

	8.107.3 Member Data Documentation
	8.107.3.1 EvFinalMove
	8.107.3.2 EvMove
	8.107.3.3 TurnDuration
	8.107.3.4 TurnManagerEventOffset
	8.107.3.5 TurnManagerListener

	8.107.4 Property Documentation
	8.107.4.1 ElapsedTimeInTurn
	8.107.4.2 IsCompletedByAll
	8.107.4.3 IsFinishedByMe
	8.107.4.4 IsOver
	8.107.4.5 RemainingSecondsInTurn
	8.107.4.6 Turn

	8.108 RaiseEventOptions Class Reference
	8.108.1 Detailed Description
	8.108.2 Member Data Documentation
	8.108.2.1 CachingOption
	8.108.2.2 Default
	8.108.2.3 Flags
	8.108.2.4 InterestGroup
	8.108.2.5 Receivers
	8.108.2.6 SequenceChannel
	8.108.2.7 TargetActors

	8.109 Region Class Reference
	8.109.1 Property Documentation
	8.109.1.1 Cluster

	8.110 RegionHandler Class Reference
	8.110.1 Detailed Description
	8.110.2 Member Data Documentation
	8.110.2.1 PingImplementation

	8.110.3 Property Documentation
	8.110.3.1 BestRegion
	8.110.3.2 EnabledRegions
	8.110.3.3 SummaryToCache

	8.111 RegionPinger Class Reference
	8.111.1 Member Function Documentation
	8.111.1.1 ResolveHost()
	8.111.1.2 Start()

	8.112 Room Class Reference
	8.112.1 Detailed Description
	8.112.2 Constructor & Destructor Documentation
	8.112.2.1 Room()

	8.112.3 Member Function Documentation
	8.112.3.1 AddPlayer()
	8.112.3.2 ClearExpectedUsers()
	8.112.3.3 GetPlayer()
	8.112.3.4 SetCustomProperties()
	8.112.3.5 SetExpectedUsers()
	8.112.3.6 SetMasterClient()
	8.112.3.7 SetPropertiesListedInLobby()
	8.112.3.8 StorePlayer()
	8.112.3.9 ToString()
	8.112.3.10 ToStringFull()

	8.112.4 Property Documentation
	8.112.4.1 AutoCleanUp
	8.112.4.2 BroadcastPropertiesChangeToAll
	8.112.4.3 DeleteNullProperties
	8.112.4.4 EmptyRoomTtl
	8.112.4.5 ExpectedUsers
	8.112.4.6 IsOpen
	8.112.4.7 IsVisible
	8.112.4.8 LoadBalancingClient
	8.112.4.9 MasterClientId
	8.112.4.10 MaxPlayers
	8.112.4.11 Name
	8.112.4.12 PlayerCount
	8.112.4.13 Players
	8.112.4.14 PlayerTtl
	8.112.4.15 PropertiesListedInLobby
	8.112.4.16 PublishUserId
	8.112.4.17 SuppressPlayerInfo
	8.112.4.18 SuppressRoomEvents

	8.113 RoomInfo Class Reference
	8.113.1 Detailed Description
	8.113.2 Member Function Documentation
	8.113.2.1 Equals()
	8.113.2.2 GetHashCode()
	8.113.2.3 ToString()
	8.113.2.4 ToStringFull()

	8.113.3 Member Data Documentation
	8.113.3.1 autoCleanUp
	8.113.3.2 emptyRoomTtl
	8.113.3.3 expectedUsers
	8.113.3.4 isOpen
	8.113.3.5 isVisible
	8.113.3.6 masterClientId
	8.113.3.7 maxPlayers
	8.113.3.8 name
	8.113.3.9 playerTtl
	8.113.3.10 propertiesListedInLobby
	8.113.3.11 RemovedFromList

	8.113.4 Property Documentation
	8.113.4.1 CustomProperties
	8.113.4.2 IsOpen
	8.113.4.3 IsVisible
	8.113.4.4 MaxPlayers
	8.113.4.5 Name
	8.113.4.6 PlayerCount

	8.114 RoomOptions Class Reference
	8.114.1 Detailed Description
	8.114.2 Member Data Documentation
	8.114.2.1 CustomRoomProperties
	8.114.2.2 CustomRoomPropertiesForLobby
	8.114.2.3 EmptyRoomTtl
	8.114.2.4 MaxPlayers
	8.114.2.5 PlayerTtl
	8.114.2.6 Plugins

	8.114.3 Property Documentation
	8.114.3.1 BroadcastPropsChangeToAll
	8.114.3.2 CleanupCacheOnLeave
	8.114.3.3 DeleteNullProperties
	8.114.3.4 IsOpen
	8.114.3.5 IsVisible
	8.114.3.6 PublishUserId
	8.114.3.7 SuppressPlayerInfo
	8.114.3.8 SuppressRoomEvents

	8.115 SceneManagerHelper Class Reference
	8.116 ScoreExtensions Class Reference
	8.117 ServerSettings Class Reference
	8.117.1 Detailed Description
	8.117.2 Member Function Documentation
	8.117.2.1 IsAppId()
	8.117.2.2 ResetBestRegionCodeInPreferences()
	8.117.2.3 ToString()
	8.117.2.4 UseCloud()

	8.117.3 Member Data Documentation
	8.117.3.1 DevRegion

	8.117.4 Property Documentation
	8.117.4.1 BestRegionSummaryInPreferences

	8.118 SmoothSyncMovement Class Reference
	8.118.1 Detailed Description
	8.118.2 Member Function Documentation
	8.118.2.1 OnPhotonSerializeView()

	8.119 StatesGui Class Reference
	8.119.1 Detailed Description

	8.120 SupportLogger Class Reference
	8.120.1 Detailed Description
	8.120.2 Member Function Documentation
	8.120.2.1 LogStats()
	8.120.2.2 OnConnected()
	8.120.2.3 OnConnectedToMaster()
	8.120.2.4 OnCreatedRoom()
	8.120.2.5 OnCreateRoomFailed()
	8.120.2.6 OnCustomAuthenticationFailed()
	8.120.2.7 OnCustomAuthenticationResponse()
	8.120.2.8 OnDisconnected()
	8.120.2.9 OnFriendListUpdate()
	8.120.2.10 OnJoinedLobby()
	8.120.2.11 OnJoinedRoom()
	8.120.2.12 OnJoinRandomFailed()
	8.120.2.13 OnJoinRoomFailed()
	8.120.2.14 OnLeftLobby()
	8.120.2.15 OnLeftRoom()
	8.120.2.16 OnLobbyStatisticsUpdate()
	8.120.2.17 OnMasterClientSwitched()
	8.120.2.18 OnPlayerEnteredRoom()
	8.120.2.19 OnPlayerLeftRoom()
	8.120.2.20 OnPlayerPropertiesUpdate()
	8.120.2.21 OnRegionListReceived()
	8.120.2.22 OnRoomListUpdate()
	8.120.2.23 OnRoomPropertiesUpdate()

	8.120.3 Member Data Documentation
	8.120.3.1 LogTrafficStats

	8.120.4 Property Documentation
	8.120.4.1 Client

	8.121 PhotonAnimatorView.SynchronizedLayer Class Reference
	8.122 PhotonAnimatorView.SynchronizedParameter Class Reference
	8.123 TabViewManager.Tab Class Reference
	8.124 TabViewManager.TabChangeEvent Class Reference
	8.124.1 Detailed Description

	8.125 TabViewManager Class Reference
	8.125.1 Detailed Description
	8.125.2 Member Function Documentation
	8.125.2.1 SelectTab()

	8.125.3 Member Data Documentation
	8.125.3.1 OnTabChanged
	8.125.3.2 Tabs
	8.125.3.3 ToggleGroup

	8.126 TeamExtensions Class Reference
	8.126.1 Detailed Description
	8.126.2 Member Function Documentation
	8.126.2.1 GetTeam()
	8.126.2.2 SetTeam()

	8.127 TextButtonTransition Class Reference
	8.127.1 Detailed Description
	8.127.2 Member Data Documentation
	8.127.2.1 HoverColor
	8.127.2.2 NormalColor
	8.127.2.3 Selectable

	8.128 TextToggleIsOnTransition Class Reference
	8.128.1 Detailed Description
	8.128.2 Member Data Documentation
	8.128.2.1 HoverOffColor
	8.128.2.2 HoverOnColor
	8.128.2.3 NormalOffColor
	8.128.2.4 NormalOnColor
	8.128.2.5 toggle

	8.129 TurnExtensions Class Reference
	8.129.1 Member Function Documentation
	8.129.1.1 GetFinishedTurn()
	8.129.1.2 GetTurn()
	8.129.1.3 GetTurnStart()
	8.129.1.4 SetFinishedTurn()
	8.129.1.5 SetTurn()

	8.129.2 Member Data Documentation
	8.129.2.1 FinishedTurnPropKey
	8.129.2.2 TurnPropKey
	8.129.2.3 TurnStartPropKey

	8.130 TypedLobby Class Reference
	8.130.1 Detailed Description
	8.130.2 Constructor & Destructor Documentation
	8.130.2.1 TypedLobby()

	8.130.3 Member Data Documentation
	8.130.3.1 Default
	8.130.3.2 Name
	8.130.3.3 Type

	8.130.4 Property Documentation
	8.130.4.1 IsDefault

	8.131 TypedLobbyInfo Class Reference
	8.131.1 Detailed Description
	8.131.2 Member Data Documentation
	8.131.2.1 PlayerCount
	8.131.2.2 RoomCount

	8.132 WebFlags Class Reference
	8.132.1 Detailed Description
	8.132.2 Property Documentation
	8.132.2.1 HttpForward
	8.132.2.2 SendAuthCookie
	8.132.2.3 SendState
	8.132.2.4 SendSync

	8.133 WebRpcResponse Class Reference
	8.133.1 Detailed Description
	8.133.2 Constructor & Destructor Documentation
	8.133.2.1 WebRpcResponse()

	8.133.3 Member Function Documentation
	8.133.3.1 ToStringFull()

	8.133.4 Property Documentation
	8.133.4.1 Message
	8.133.4.2 Name
	8.133.4.3 Parameters
	8.133.4.4 ResultCode

	Index

