// Copyright(c) 2018, Benjamin Ward
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED.IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// SimplexNoise for C#
// Author: Benjamin Ward
// Github Link: https://github.com/WardBenjamin/SimplexNoise
// Originally authored by Heikki Törmälä
using System;
namespace Simplex
{
///
/// Implementation of the Perlin simplex noise, an improved Perlin noise algorithm.
/// Based loosely on SimplexNoise1234 by Stefan Gustavson
///
public class Noise
{
public static float[] Calc1D(int width, float scale)
{
float[] values = new float[width];
for (int i = 0; i < width; i++)
values[i] = Generate(i * scale) * 128 + 128;
return values;
}
public static float[,] Calc2D(int width, int height, float scale)
{
float[,] values = new float[width, height];
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
values[i, j] = Generate(i * scale, j * scale) * 128 + 128;
return values;
}
public static float[,,] Calc3D(int width, int height, int length, float scale)
{
float[,,] values = new float[width, height, length];
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
for (int k = 0; k < length; k++)
values[i, j, k] = Generate(i * scale, j * scale, k * scale) * 128 + 128;
return values;
}
public static float CalcPixel1D(int x, float scale)
{
return Generate(x * scale) * 128 + 128;
}
public static float CalcPixel2D(int x, int y, float scale)
{
return Generate(x * scale, y * scale) * 128 + 128;
}
public static float CalcPixel3D(int x, int y, int z, float scale)
{
return Generate(x * scale, y * scale, z * scale) * 128 + 128;
}
static Noise()
{
perm = new byte[permOriginal.Length];
Simplex.Noise.permOriginal.CopyTo(perm, 0);
}
public static int Seed
{
get { return seed; }
set
{
if (value == 0)
{
perm = new byte[permOriginal.Length];
Simplex.Noise.permOriginal.CopyTo(perm, 0);
}
else
{
perm = new byte[512];
Random random = new Random(value);
random.NextBytes(perm);
}
}
}
private static int seed = 0;
///
/// 1D simplex noise
///
///
///
internal static float Generate(float x)
{
int i0 = FastFloor(x);
int i1 = i0 + 1;
float x0 = x - i0;
float x1 = x0 - 1.0f;
float n0, n1;
float t0 = 1.0f - x0 * x0;
t0 *= t0;
n0 = t0 * t0 * grad(perm[i0 & 0xff], x0);
float t1 = 1.0f - x1 * x1;
t1 *= t1;
n1 = t1 * t1 * grad(perm[i1 & 0xff], x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395f * (n0 + n1);
}
///
/// 2D simplex noise
///
///
///
///
internal static float Generate(float x, float y)
{
const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0)
const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0
float n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y) * F2; // Hairy factor for 2D
float xs = x + s;
float ys = y + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
float t = (float)(i + j) * G2;
float X0 = i - t; // Unskew the cell origin back to (x,y) space
float Y0 = j - t;
float x0 = x - X0; // The x,y distances from the cell origin
float y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
float y1 = y0 - j1 + G2;
float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
float y2 = y0 - 1.0f + 2.0f * G2;
// Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
int ii = Mod(i, 256);
int jj = Mod(j, 256);
// Calculate the contribution from the three corners
float t0 = 0.5f - x0 * x0 - y0 * y0;
if (t0 < 0.0f) n0 = 0.0f;
else
{
t0 *= t0;
n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0);
}
float t1 = 0.5f - x1 * x1 - y1 * y1;
if (t1 < 0.0f) n1 = 0.0f;
else
{
t1 *= t1;
n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1);
}
float t2 = 0.5f - x2 * x2 - y2 * y2;
if (t2 < 0.0f) n2 = 0.0f;
else
{
t2 *= t2;
n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
}
internal static float Generate(float x, float y, float z)
{
// Simple skewing factors for the 3D case
const float F3 = 0.333333333f;
const float G3 = 0.166666667f;
float n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
float xs = x + s;
float ys = y + s;
float zs = z + s;
int i = FastFloor(xs);
int j = FastFloor(ys);
int k = FastFloor(zs);
float t = (float)(i + j + k) * G3;
float X0 = i - t; // Unskew the cell origin back to (x,y,z) space
float Y0 = j - t;
float Z0 = k - t;
float x0 = x - X0; // The x,y,z distances from the cell origin
float y0 = y - Y0;
float z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
/* This code would benefit from a backport from the GLSL version! */
if (x0 >= y0)
{
if (y0 >= z0)
{ i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order
else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
}
else
{ // x0 0) ? ((int)x) : (((int)x) - 1);
}
private static int Mod(int x, int m)
{
int a = x % m;
return a < 0 ? a + m : a;
}
private static float grad(int hash, float x)
{
int h = hash & 15;
float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
return (grad * x); // Multiply the gradient with the distance
}
private static float grad(int hash, float x, float y)
{
int h = hash & 7; // Convert low 3 bits of hash code
float u = h < 4 ? x : y; // into 8 simple gradient directions,
float v = h < 4 ? y : x; // and compute the dot product with (x,y).
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v);
}
private static float grad(int hash, float x, float y, float z)
{
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
float u = h < 8 ? x : y; // gradient directions, and compute dot product.
float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v);
}
private static float grad(int hash, float x, float y, float z, float t)
{
int h = hash & 31; // Convert low 5 bits of hash code into 32 simple
float u = h < 24 ? x : y; // gradient directions, and compute dot product.
float v = h < 16 ? y : z;
float w = h < 8 ? z : t;
return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w);
}
}
}