tailwind-nextjs-blog/data/blog/deriving-ols-estimator.mdx
2022-07-17 21:40:41 +08:00

142 lines
4.1 KiB
Plaintext

---
title: Deriving the OLS Estimator
date: '2020-12-21'
tags: ['next js', 'math', 'ols']
draft: false
summary: 'How to derive the OLS Estimator with matrix notation and a tour of math typesetting using markdown with the help of KaTeX.'
---
# Introduction
Parsing and display of math equations is included in this blog template. Parsing of math is enabled by `remark-math` and `rehype-katex`.
KaTeX and its associated font is included in `_document.js` so feel free to use it on any page.
^[For the full list of supported TeX functions, check out the [KaTeX documentation](https://katex.org/docs/supported.html)]
Inline math symbols can be included by enclosing the term between the `$` symbol.
Math code blocks are denoted by `$$`.
If you intend to use the `$` sign instead of math, you can escape it (`\$`), or specify the HTML entity (`$`) [^2]
Inline or manually enumerated footnotes are also supported. Click on the links above to see them in action.
[^2]: \$10 and $20.
# Deriving the OLS Estimator
Using matrix notation, let $n$ denote the number of observations and $k$ denote the number of regressors.
The vector of outcome variables $\mathbf{Y}$ is a $n \times 1$ matrix,
```tex
\mathbf{Y} = \left[\begin{array}
{c}
y_1 \\
. \\
. \\
. \\
y_n
\end{array}\right]
```
$$
\mathbf{Y} = \left[\begin{array}
{c}
y_1 \\
. \\
. \\
. \\
y_n
\end{array}\right]
$$
The matrix of regressors $\mathbf{X}$ is a $n \times k$ matrix (or each row is a $k \times 1$ vector),
```latex
\mathbf{X} = \left[\begin{array}
{ccccc}
x_{11} & . & . & . & x_{1k} \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
x_{n1} & . & . & . & x_{nn}
\end{array}\right] =
\left[\begin{array}
{c}
\mathbf{x}'_1 \\
. \\
. \\
. \\
\mathbf{x}'_n
\end{array}\right]
```
$$
\mathbf{X} = \left[\begin{array}
{ccccc}
x_{11} & . & . & . & x_{1k} \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
x_{n1} & . & . & . & x_{nn}
\end{array}\right] =
\left[\begin{array}
{c}
\mathbf{x}'_1 \\
. \\
. \\
. \\
\mathbf{x}'_n
\end{array}\right]
$$
The vector of error terms $\mathbf{U}$ is also a $n \times 1$ matrix.
At times it might be easier to use vector notation. For consistency, I will use the bold small x to denote a vector and capital letters to denote a matrix. Single observations are denoted by the subscript.
## Least Squares
**Start**:
$$y_i = \mathbf{x}'_i \beta + u_i$$
**Assumptions**:
1. Linearity (given above)
2. $E(\mathbf{U}|\mathbf{X}) = 0$ (conditional independence)
3. rank($\mathbf{X}$) = $k$ (no multi-collinearity i.e. full rank)
4. $Var(\mathbf{U}|\mathbf{X}) = \sigma^2 I_n$ (Homoskedascity)
**Aim**:
Find $\beta$ that minimises the sum of squared errors:
$$
Q = \sum_{i=1}^{n}{u_i^2} = \sum_{i=1}^{n}{(y_i - \mathbf{x}'_i\beta)^2} = (Y-X\beta)'(Y-X\beta)
$$
**Solution**:
Hints: $Q$ is a $1 \times 1$ scalar, by symmetry $\frac{\partial b'Ab}{\partial b} = 2Ab$.
Take matrix derivative w.r.t $\beta$:
```tex
\begin{aligned}
\min Q & = \min_{\beta} \mathbf{Y}'\mathbf{Y} - 2\beta'\mathbf{X}'\mathbf{Y} +
\beta'\mathbf{X}'\mathbf{X}\beta \\
& = \min_{\beta} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \\
\text{[FOC]}~~~0 & = - 2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\hat{\beta} \\
\hat{\beta} & = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\
& = (\sum^{n} \mathbf{x}_i \mathbf{x}'_i)^{-1} \sum^{n} \mathbf{x}_i y_i
\end{aligned}
```
$$
\begin{aligned}
\min Q & = \min_{\beta} \mathbf{Y}'\mathbf{Y} - 2\beta'\mathbf{X}'\mathbf{Y} +
\beta'\mathbf{X}'\mathbf{X}\beta \\
& = \min_{\beta} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta \\
\text{[FOC]}~~~0 & = - 2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\hat{\beta} \\
\hat{\beta} & = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} \\
& = (\sum^{n} \mathbf{x}_i \mathbf{x}'_i)^{-1} \sum^{n} \mathbf{x}_i y_i
\end{aligned}
$$