Implement LED test effects with proper cleanup

- Add LED test effects page with multiple test patterns (solid colors, rainbow, breathing, flowing)
- Implement Rust backend for LED test effects with proper task management
- Add automatic cleanup when navigating away from test page using onCleanup hook
- Ensure test mode is properly disabled to resume normal ambient lighting
- Clean up debug logging for production readiness
- Fix menu navigation issues by using SolidJS router components

Features:
- Multiple test patterns: solid colors, rainbow cycle, breathing effect, flowing lights
- Configurable animation speed
- Automatic cleanup prevents LED conflicts with ambient lighting
- Responsive UI with proper error handling
This commit is contained in:
2025-07-06 02:37:15 +08:00
parent 90cace679b
commit 7e2dafa3d2
7 changed files with 820 additions and 35 deletions

View File

@ -0,0 +1,239 @@
use std::f64::consts::PI;
use serde::{Deserialize, Serialize};
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum TestEffectType {
FlowingRainbow,
GroupCounting,
SingleScan,
Breathing,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct TestEffectConfig {
pub effect_type: TestEffectType,
pub led_count: u32,
pub led_type: LedType,
pub speed: f64, // Speed multiplier
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum LedType {
RGB,
RGBW,
}
pub struct LedTestEffects;
impl LedTestEffects {
/// Generate LED colors for a specific test effect at a given time
pub fn generate_colors(config: &TestEffectConfig, time_ms: u64) -> Vec<u8> {
let time_seconds = time_ms as f64 / 1000.0;
match config.effect_type {
TestEffectType::FlowingRainbow => {
Self::flowing_rainbow(config.led_count, config.led_type.clone(), time_seconds, config.speed)
}
TestEffectType::GroupCounting => {
Self::group_counting(config.led_count, config.led_type.clone())
}
TestEffectType::SingleScan => {
Self::single_scan(config.led_count, config.led_type.clone(), time_seconds, config.speed)
}
TestEffectType::Breathing => {
Self::breathing(config.led_count, config.led_type.clone(), time_seconds, config.speed)
}
}
}
/// Flowing rainbow effect - smooth rainbow colors flowing along the strip
fn flowing_rainbow(led_count: u32, led_type: LedType, time: f64, speed: f64) -> Vec<u8> {
let mut buffer = Vec::new();
let time_offset = (time * speed * 60.0) % 360.0; // 60 degrees per second at speed 1.0
for i in 0..led_count {
// Create longer wavelength for smoother color transitions
let hue = ((i as f64 * 720.0 / led_count as f64) + time_offset) % 360.0;
let rgb = Self::hsv_to_rgb(hue, 1.0, 1.0);
buffer.push(rgb.0);
buffer.push(rgb.1);
buffer.push(rgb.2);
if matches!(led_type, LedType::RGBW) {
buffer.push(0); // White channel
}
}
buffer
}
/// Group counting effect - every 10 LEDs have different colors
fn group_counting(led_count: u32, led_type: LedType) -> Vec<u8> {
let mut buffer = Vec::new();
let group_colors = [
(255, 0, 0), // Red (1-10)
(0, 255, 0), // Green (11-20)
(0, 0, 255), // Blue (21-30)
(255, 255, 0), // Yellow (31-40)
(255, 0, 255), // Magenta (41-50)
(0, 255, 255), // Cyan (51-60)
(255, 128, 0), // Orange (61-70)
(128, 255, 0), // Lime (71-80)
(255, 255, 255), // White (81-90)
(128, 128, 128), // Gray (91-100)
];
for i in 0..led_count {
let group_index = (i / 10) % group_colors.len() as u32;
let color = group_colors[group_index as usize];
buffer.push(color.0);
buffer.push(color.1);
buffer.push(color.2);
if matches!(led_type, LedType::RGBW) {
buffer.push(0); // White channel
}
}
buffer
}
/// Single LED scan effect - one LED moves along the strip
fn single_scan(led_count: u32, led_type: LedType, time: f64, speed: f64) -> Vec<u8> {
let mut buffer = Vec::new();
let scan_period = 2.0 / speed; // 2 seconds per full scan at speed 1.0
let active_index = ((time / scan_period * led_count as f64) as u32) % led_count;
for i in 0..led_count {
if i == active_index {
// Bright white LED
buffer.push(255);
buffer.push(255);
buffer.push(255);
if matches!(led_type, LedType::RGBW) {
buffer.push(255); // White channel
}
} else {
// Off
buffer.push(0);
buffer.push(0);
buffer.push(0);
if matches!(led_type, LedType::RGBW) {
buffer.push(0); // White channel
}
}
}
buffer
}
/// Breathing effect - entire strip breathes with white light
fn breathing(led_count: u32, led_type: LedType, time: f64, speed: f64) -> Vec<u8> {
let mut buffer = Vec::new();
let breathing_period = 4.0 / speed; // 4 seconds per breath at speed 1.0
let brightness = ((time / breathing_period * 2.0 * PI).sin() * 0.5 + 0.5) * 255.0;
let brightness = brightness as u8;
for _i in 0..led_count {
buffer.push(brightness);
buffer.push(brightness);
buffer.push(brightness);
if matches!(led_type, LedType::RGBW) {
buffer.push(brightness); // White channel
}
}
buffer
}
/// Convert HSV to RGB
/// H: 0-360, S: 0-1, V: 0-1
/// Returns: (R, G, B) where each component is 0-255
fn hsv_to_rgb(h: f64, s: f64, v: f64) -> (u8, u8, u8) {
let c = v * s;
let x = c * (1.0 - ((h / 60.0) % 2.0 - 1.0).abs());
let m = v - c;
let (r_prime, g_prime, b_prime) = if h < 60.0 {
(c, x, 0.0)
} else if h < 120.0 {
(x, c, 0.0)
} else if h < 180.0 {
(0.0, c, x)
} else if h < 240.0 {
(0.0, x, c)
} else if h < 300.0 {
(x, 0.0, c)
} else {
(c, 0.0, x)
};
let r = ((r_prime + m) * 255.0).round() as u8;
let g = ((g_prime + m) * 255.0).round() as u8;
let b = ((b_prime + m) * 255.0).round() as u8;
(r, g, b)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_hsv_to_rgb() {
// Test red
let (r, g, b) = LedTestEffects::hsv_to_rgb(0.0, 1.0, 1.0);
assert_eq!((r, g, b), (255, 0, 0));
// Test green
let (r, g, b) = LedTestEffects::hsv_to_rgb(120.0, 1.0, 1.0);
assert_eq!((r, g, b), (0, 255, 0));
// Test blue
let (r, g, b) = LedTestEffects::hsv_to_rgb(240.0, 1.0, 1.0);
assert_eq!((r, g, b), (0, 0, 255));
}
#[test]
fn test_flowing_rainbow() {
let config = TestEffectConfig {
effect_type: TestEffectType::FlowingRainbow,
led_count: 10,
led_type: LedType::RGB,
speed: 1.0,
};
let colors = LedTestEffects::generate_colors(&config, 0);
assert_eq!(colors.len(), 30); // 10 LEDs * 3 bytes each
}
#[test]
fn test_group_counting() {
let config = TestEffectConfig {
effect_type: TestEffectType::GroupCounting,
led_count: 20,
led_type: LedType::RGB,
speed: 1.0,
};
let colors = LedTestEffects::generate_colors(&config, 0);
assert_eq!(colors.len(), 60); // 20 LEDs * 3 bytes each
// First 10 should be red
assert_eq!(colors[0], 255); // R
assert_eq!(colors[1], 0); // G
assert_eq!(colors[2], 0); // B
// Next 10 should be green
assert_eq!(colors[30], 0); // R
assert_eq!(colors[31], 255); // G
assert_eq!(colors[32], 0); // B
}
}