docs: enhance hardware protocol documentation and reorganize project docs

- Complete hardware communication protocol documentation with:
  * Add ping/pong health check protocol (0x01)
  * Add hardware control protocols (0x03 brightness, 0x04 volume)
  * Add mDNS service discovery specifications
  * Add connection state management and retry logic
  * Add comprehensive troubleshooting guide
  * Update hardware implementation examples

- Reorganize project documentation:
  * Move device auto-refresh docs from root to docs/ directory
  * Rename files to follow kebab-case convention
  * Maintain complete technical implementation details

- Fix markdown formatting issues:
  * Add proper language tags to code blocks
  * Ensure consistent documentation structure
This commit is contained in:
2025-07-07 13:50:05 +08:00
parent 2a49b081cb
commit d1a614fbbb
4 changed files with 529 additions and 37 deletions

View File

@ -0,0 +1,99 @@
# LED Strip Test Device Auto-Refresh Implementation
## Overview
Implemented automatic refresh functionality for the device dropdown in the LED strip test interface. The device list now updates in real-time when devices are discovered, connected, or disconnected.
## Changes Made
### 1. Frontend Changes (`src/components/led-strip-test/led-strip-test.tsx`)
#### Added Event Listener Import
```typescript
import { listen } from '@tauri-apps/api/event';
```
#### Enhanced Device Loading Logic
- **Initial Load**: Still loads devices on component mount using `get_boards()`
- **Real-time Updates**: Added listener for `boards_changed` events from backend
- **Smart Selection**: Automatically handles device selection when devices are added/removed:
- If current device disconnects, automatically selects first available device
- If no device was selected and devices become available, selects the first one
- Properly cleans up event listeners on component unmount
#### Improved UI Display
- **Device Count**: Shows number of devices found in label
- **Connection Status**: Each device option shows:
- Status icon (🟢 Connected, 🟡 Connecting, 🔴 Disconnected)
- Device name and address
- Connection status text
- **Empty State**: Shows "Searching..." when no devices found
#### Type Safety Improvements
- Updated `BoardInfo` interface to match backend types
- Proper handling of `connect_status` union type
- Type-safe status checking functions
### 2. Backend Integration
The implementation leverages existing backend infrastructure:
- **UdpRpc Manager**: Continuously searches for devices via mDNS
- **Device Monitoring**: Checks device connectivity every second
- **Event Broadcasting**: Sends `boards_changed` events to frontend
- **Status Tracking**: Maintains real-time connection status for each device
## Technical Details
### Event Flow
1. Backend `UdpRpc` discovers devices via mDNS service discovery
2. Backend monitors device connectivity with periodic health checks
3. Backend broadcasts `boards_changed` events when device list changes
4. Frontend listens for events and updates UI automatically
5. Frontend handles device selection logic intelligently
### Connection Status Types
- `Connected`: Device is responding to ping requests
- `Connecting`: Device is in retry state (with retry count)
- `Disconnected`: Device is not responding
### Error Handling
- Graceful fallback if initial device load fails
- Proper cleanup of event listeners
- Maintains UI state consistency during device changes
## Benefits
1. **Real-time Updates**: No need to manually refresh device list
2. **Better UX**: Visual indicators for device status
3. **Automatic Recovery**: Handles device disconnections gracefully
4. **Type Safety**: Proper TypeScript types prevent runtime errors
5. **Performance**: Efficient event-driven updates instead of polling
## Implementation Status
**Completed**: LED Strip Test device dropdown auto-refresh
**Already Implemented**: Board Index page auto-refresh (was already working)
**Type Safety**: Fixed TypeScript type definitions for BoardInfo
**UI Improvements**: Added status indicators and device count display
## Testing
To test the functionality:
1. Start the application with `npm run tauri dev`
2. Navigate to LED Strip Test page
3. Observe device list updates as devices come online/offline
4. Verify status indicators show correct connection states:
- 🟢 Connected devices
- 🟡 Connecting devices (with retry count)
- 🔴 Disconnected devices
5. Test device selection behavior when devices disconnect
6. Check that device count is displayed in the label
## Code Quality
- ✅ No TypeScript errors
- ✅ Proper event listener cleanup
- ✅ Type-safe status checking
- ✅ Consistent with existing codebase patterns
- ✅ Follows SolidJS best practices
## Future Enhancements
- Add device refresh button for manual refresh
- Show device discovery progress indicator
- Add device connection retry controls
- Display device ping latency information
- Add device connection history/logs

View File

@ -0,0 +1,105 @@
# Device Auto-Refresh Testing Guide
## Test Scenarios
### 1. Initial Load Test
**Expected Behavior**: Device list loads automatically when component mounts
**Steps**:
1. Start the application: `npm run tauri dev`
2. Navigate to LED Strip Test page
3. Observe the device dropdown
**Expected Results**:
- Device dropdown shows "Searching..." if no devices found
- Device dropdown shows device count if devices are found
- First available device is automatically selected
- Status icons appear next to device names
### 2. Device Discovery Test
**Expected Behavior**: New devices appear automatically when discovered
**Steps**:
1. Start with no devices connected
2. Connect a device to the network
3. Wait for device discovery (should be automatic)
**Expected Results**:
- Device count updates automatically
- New device appears in dropdown
- If no device was selected, new device gets selected automatically
- Status icon shows connection state
### 3. Device Disconnection Test
**Expected Behavior**: Disconnected devices are handled gracefully
**Steps**:
1. Start with connected devices
2. Select a device in the dropdown
3. Disconnect the selected device from network
4. Wait for connection timeout
**Expected Results**:
- Device status changes to disconnected (🔴)
- If device becomes unavailable, another device is selected automatically
- Device count updates
- UI remains responsive
### 4. Connection Status Test
**Expected Behavior**: Status indicators reflect actual device states
**Steps**:
1. Observe devices in different connection states
2. Check status icons and text
**Expected Results**:
- 🟢 "Connected" for responsive devices
- 🟡 "Connecting" for devices in retry state
- 🔴 "Disconnected" for unresponsive devices
- Status text matches icon state
### 5. UI Responsiveness Test
**Expected Behavior**: Interface remains responsive during device changes
**Steps**:
1. Rapidly connect/disconnect devices
2. Interact with other UI elements during device changes
3. Switch between pages and return
**Expected Results**:
- No UI freezing or lag
- Event listeners are properly cleaned up
- No memory leaks
- Smooth transitions
## Verification Checklist
- [ ] Device dropdown shows correct device count
- [ ] Status icons display correctly (🟢🟡🔴)
- [ ] Automatic device selection works
- [ ] Event listeners are cleaned up on component unmount
- [ ] No TypeScript errors in console
- [ ] No runtime errors in console
- [ ] Performance remains good with multiple devices
- [ ] UI updates smoothly without flickering
## Common Issues to Watch For
1. **Memory Leaks**: Event listeners not cleaned up
2. **Type Errors**: Incorrect BoardInfo type handling
3. **Selection Logic**: Device selection not updating correctly
4. **Performance**: UI lag during rapid device changes
5. **State Consistency**: UI state not matching actual device state
## Debug Information
Check browser console for:
- `boards_changed` events
- Device list updates
- Selection changes
- Any error messages
Check Tauri logs for:
- Device discovery messages
- Connection status changes
- mDNS service events

View File

@ -2,7 +2,7 @@
## Overview
UDP-based protocol for sending LED color data from desktop application to ambient light hardware boards. The hardware acts as a simple UDP-to-WS2812 bridge, directly forwarding color data without any processing or LED type distinction.
UDP-based bidirectional protocol for communication between desktop application and ambient light hardware boards. The protocol supports LED color data transmission, device health monitoring, and remote control capabilities.
## Connection
@ -11,12 +11,61 @@ UDP-based protocol for sending LED color data from desktop application to ambien
- **Discovery**: mDNS (`_ambient_light._udp.local.`)
- **Example Board**: `192.168.31.206:23042`
## Packet Format
## mDNS Service Discovery
### Service Registration (Hardware Side)
Hardware boards must register the following mDNS service:
- **Service Type**: `_ambient_light._udp.local.`
- **Port**: 23042
- **TXT Records**: Optional, can include device information
### Service Discovery (Desktop Side)
Desktop application continuously browses for `_ambient_light._udp.local.` services and automatically connects to discovered devices.
## Protocol Messages
The protocol uses different message headers to distinguish message types:
| Header | Direction | Purpose | Format |
|--------|-----------|---------|---------|
| 0x01 | Desktop → Hardware | Ping (Health Check) | `[0x01]` |
| 0x01 | Hardware → Desktop | Pong (Health Response) | `[0x01]` |
| 0x02 | Desktop → Hardware | LED Color Data | `[0x02][Offset_H][Offset_L][Color_Data...]` |
| 0x03 | Hardware → Desktop | Display Brightness Control | `[0x03][Display_Index][Brightness]` |
| 0x04 | Hardware → Desktop | Volume Control | `[0x04][Volume_Percent]` |
## Health Check Protocol (Ping/Pong)
### Desktop → Hardware (Ping)
```text
Byte 0: Header (0x01)
```
### Hardware → Desktop (Pong)
```text
Byte 0: Header (0x01)
```
**Behavior:**
- Desktop sends ping every 1 second to each connected device
- Hardware must respond with pong within 1 second
- Timeout or incorrect response triggers reconnection logic
- After 10 failed attempts, device is marked as disconnected
## LED Color Data Protocol
### Packet Format
```text
Byte 0: Header (0x02)
Byte 1: Offset High (upper 8 bits of LED start position)
Byte 2: Offset Low (lower 8 bits of LED start position)
Byte 2: Offset Low (lower 8 bits of LED start position)
Byte 3+: LED Color Data (variable length)
```
@ -24,13 +73,13 @@ Byte 3+: LED Color Data (variable length)
### RGB LEDs (3 bytes per LED)
```
```text
[R][G][B][R][G][B][R][G][B]...
```
### RGBW LEDs (4 bytes per LED)
```
```text
[R][G][B][W][R][G][B][W][R][G][B][W]...
```
@ -57,13 +106,78 @@ calibrated_b = (original_b * calibration_b) / 255
calibrated_w = calibration_w // Direct value
```
## Hardware Control Protocol (Hardware → Desktop)
### Display Brightness Control
Hardware can send display brightness adjustment commands to the desktop:
```text
Byte 0: Header (0x03)
Byte 1: Display Index (0-based display number)
Byte 2: Brightness (0-255, where 255 = 100% brightness)
```
**Example:** Set display 0 to 50% brightness
```text
03 00 80
│ │ └─ Brightness (128 = ~50%)
│ └─ Display Index (0)
└─ Header (0x03)
```
### Volume Control
Hardware can send system volume adjustment commands to the desktop:
```text
Byte 0: Header (0x04)
Byte 1: Volume Percent (0-100)
```
**Example:** Set system volume to 75%
```text
04 4B
│ └─ Volume (75%)
└─ Header (0x04)
```
## Connection State Management
### Connection States
- **Unknown**: Initial state when device is first discovered
- **Connecting**: Device is being tested, includes retry count (1-10)
- **Connected**: Device is responding to ping requests normally
- **Disconnected**: Device failed to respond after 10 retry attempts
### State Transitions
```text
Unknown → Connecting(1) → Connected
↓ ↓ ↓
↓ Connecting(2-10) ↓
↓ ↓ ↓
└─→ Disconnected ←────────┘
```
### Retry Logic
1. **Initial Connection**: When device discovered via mDNS
2. **Health Check Failure**: If ping timeout or wrong response
3. **Retry Attempts**: Up to 10 attempts with 1-second intervals
4. **Disconnection**: After 10 failed attempts, mark as disconnected
5. **Recovery**: Disconnected devices continue to receive ping attempts
## Packet Examples
### RGB Example
3 RGB LEDs starting at position 0: Red, Green, Blue
```
```text
02 00 00 FF 00 00 00 FF 00 00 00 FF
│ │ │ └─────────────────────────── 9 bytes color data
│ │ └─ Offset Low (0)
@ -71,11 +185,11 @@ calibrated_w = calibration_w // Direct value
└─ Header (0x02)
```
### RGBW Example
### RGBW Example
2 RGBW LEDs starting at position 10: White, Warm White
```
```text
02 00 0A FF FF FF FF FF C8 96 C8
│ │ │ └─────────────────────── 8 bytes color data
│ │ └─ Offset Low (10)
@ -94,20 +208,48 @@ calibrated_w = calibration_w // Direct value
## Hardware Implementation
The hardware board acts as a simple UDP-to-WS2812 bridge, directly forwarding color data to the LED strips without any processing or type distinction.
The hardware board handles multiple protocol functions: UDP-to-WS2812 bridge for LED data, health monitoring, and optional control input capabilities.
### Packet Processing
### Required Functions
1. **Validation**: Check minimum 3 bytes and header (0x02)
2. **Extract Offset**: Parse 16-bit LED start position
3. **Forward Data**: Send color data directly to WS2812 controller
4. **No Type Logic**: Hardware doesn't distinguish RGB/RGBW - just forwards bytes
1. **mDNS Service Registration**: Advertise `_ambient_light._udp.local.` service
2. **UDP Server**: Listen on port 23042 for incoming packets
3. **Packet Processing**: Handle different message types based on header
4. **Health Monitoring**: Respond to ping requests with pong
5. **LED Control**: Forward color data to WS2812 strips
6. **Optional Control**: Send brightness/volume commands to desktop
### Example C Code
### Packet Processing Logic
```c
void process_packet(uint8_t* data, size_t len) {
if (len < 3 || data[0] != 0x02) return;
if (len < 1) return;
switch (data[0]) {
case 0x01: // Ping request
handle_ping(data, len);
break;
case 0x02: // LED color data
handle_led_data(data, len);
break;
default:
// Unknown packet type, ignore
break;
}
}
void handle_ping(uint8_t* data, size_t len) {
if (len != 1) return;
// Respond with pong
uint8_t pong = 0x01;
udp_send_response(&pong, 1);
}
void handle_led_data(uint8_t* data, size_t len) {
if (len < 3) return;
uint16_t offset = (data[1] << 8) | data[2];
uint8_t* color_data = &data[3];
@ -118,23 +260,119 @@ void process_packet(uint8_t* data, size_t len) {
}
```
### Key Simplifications
### Optional Control Features
- **No LED Type Detection**: Hardware doesn't need to know RGB vs RGBW
- **Direct Data Forward**: Color bytes sent as-is to WS2812 controller
- **Desktop Handles Logic**: All RGB/RGBW processing done on desktop side
- **Simple Bridge**: Hardware is just a UDP-to-WS2812 data bridge
Hardware can optionally send control commands to desktop:
```c
// Send display brightness control
void send_brightness_control(uint8_t display_index, uint8_t brightness) {
uint8_t packet[3] = {0x03, display_index, brightness};
udp_send_to_desktop(packet, 3);
}
// Send volume control
void send_volume_control(uint8_t volume_percent) {
uint8_t packet[2] = {0x04, volume_percent};
udp_send_to_desktop(packet, 2);
}
```
### Key Implementation Notes
- **Ping Response**: Must respond to ping (0x01) within 1 second
- **LED Data**: Direct forward to WS2812, no processing required
- **Control Commands**: Optional feature for hardware with input capabilities
- **mDNS Registration**: Essential for automatic device discovery
- **UDP Server**: Must handle concurrent connections from multiple desktops
## Troubleshooting
**No Updates**: Check network connectivity, mDNS discovery, port 23042
**Wrong Colors**: Verify calibration settings on desktop application
**Flickering**: Monitor packet rate, network congestion, power supply
**Partial Updates**: Check strip configuration, offset calculations
**Hardware Issues**: Verify WS2812 wiring, power supply, data signal integrity
### Device Discovery Issues
**Device Not Found**:
- Verify mDNS service registration on hardware
- Check service type: `_ambient_light._udp.local.`
- Ensure port 23042 is accessible
- Verify network connectivity between desktop and hardware
**Device Shows as Disconnected**:
- Check ping/pong response implementation
- Verify hardware responds to 0x01 packets within 1 second
- Monitor network latency and packet loss
- Check UDP server implementation on hardware
### LED Control Issues
**No LED Updates**:
- Verify hardware processes 0x02 packets correctly
- Check WS2812 wiring and power supply
- Monitor packet reception on hardware side
- Verify offset calculations and LED strip configuration
**Wrong Colors**:
- Check color calibration settings on desktop
- Verify RGB/RGBW data format matches LED strip type
- Monitor color data in packets (bytes 3+)
- Check WS2812 color order (GRB vs RGB)
**Flickering or Lag**:
- Monitor packet rate and network congestion
- Check power supply stability for LED strips
- Verify WS2812 data signal integrity
- Consider reducing update frequency
### Control Protocol Issues
**Brightness/Volume Control Not Working**:
- Verify hardware sends correct packet format (0x03/0x04)
- Check desktop receives and processes control packets
- Monitor packet transmission from hardware
- Verify display index and value ranges
### Connection State Issues
**Frequent Disconnections**:
- Check network stability and latency
- Verify ping response timing (< 1 second)
- Monitor retry logic and connection state transitions
- Check for UDP packet loss
**Stuck in Connecting State**:
- Verify ping/pong packet format
- Check hardware UDP server implementation
- Monitor ping response timing
- Verify network firewall settings
### Network Debugging
**Packet Monitoring**:
```bash
# Monitor UDP traffic on port 23042
tcpdump -i any -X port 23042
# Check mDNS service discovery
dns-sd -B _ambient_light._udp.local.
```
**Hardware Debug Output**:
- Log received packet headers and lengths
- Monitor ping/pong timing
- Track LED data processing
- Log mDNS service registration status
## Protocol Version
- **Current**: 1.0
- **Header**: 0x02
- **Future**: Different headers for backward compatibility
- **Headers**: 0x01 (Ping/Pong), 0x02 (LED Data), 0x03 (Brightness), 0x04 (Volume)
- **Future**: Additional headers for new features, backward compatibility maintained

View File

@ -1,12 +1,13 @@
import { createSignal, createEffect, For, Show, onCleanup } from 'solid-js';
import { invoke } from '@tauri-apps/api/core';
import { listen } from '@tauri-apps/api/event';
interface BoardInfo {
fullname: string;
host: string;
address: string;
port: number;
connect_status: string;
connect_status: 'Connected' | 'Disconnected' | { Connecting: number };
}
interface TestPattern {
@ -31,8 +32,9 @@ export const LedStripTest = () => {
const [currentPattern, setCurrentPattern] = createSignal<TestPattern | null>(null);
const [animationSpeed, setAnimationSpeed] = createSignal(33); // ~30fps
// Load available boards
// Load available boards and listen for changes
createEffect(() => {
// Initial load
invoke<BoardInfo[]>('get_boards').then((boardList) => {
setBoards(boardList);
if (boardList.length > 0 && !selectedBoard()) {
@ -41,6 +43,35 @@ export const LedStripTest = () => {
}).catch((error) => {
console.error('Failed to load boards:', error);
});
// Listen for board changes
const unlisten = listen<BoardInfo[]>('boards_changed', (event) => {
const boardList = event.payload;
setBoards(boardList);
// If currently selected board is no longer available, select the first available one
const currentBoard = selectedBoard();
if (currentBoard) {
const stillExists = boardList.find(board =>
board.host === currentBoard.host &&
board.address === currentBoard.address &&
board.port === currentBoard.port
);
if (!stillExists) {
// Current board is no longer available, select first available or null
setSelectedBoard(boardList.length > 0 ? boardList[0] : null);
}
} else if (boardList.length > 0) {
// No board was selected, select the first one
setSelectedBoard(boardList[0]);
}
});
// Cleanup listener when effect is disposed
onCleanup(() => {
unlisten.then((unlistenFn) => unlistenFn());
});
});
// Cleanup when component is unmounted
@ -161,8 +192,11 @@ export const LedStripTest = () => {
<div class="form-control w-full max-w-xs">
<label class="label">
<span class="label-text">Select Hardware Board</span>
<span class="label-text-alt">
{boards().length > 0 ? `${boards().length} device(s) found` : 'Searching...'}
</span>
</label>
<select
<select
class="select select-bordered w-full max-w-xs"
value={selectedBoard()?.host || ''}
onChange={(e) => {
@ -170,13 +204,29 @@ export const LedStripTest = () => {
setSelectedBoard(board || null);
}}
>
<option disabled value="">Choose a board</option>
<option disabled value="">
{boards().length > 0 ? 'Choose a board' : 'No boards found'}
</option>
<For each={boards()}>
{(board) => (
<option value={board.host}>
{board.host} ({board.address}:{board.port})
</option>
)}
{(board) => {
const getStatusIcon = (status: BoardInfo['connect_status']) => {
if (status === 'Connected') return '🟢';
if (typeof status === 'object' && 'Connecting' in status) return '🟡';
return '🔴';
};
const getStatusText = (status: BoardInfo['connect_status']) => {
if (status === 'Connected') return 'Connected';
if (typeof status === 'object' && 'Connecting' in status) return 'Connecting';
return 'Disconnected';
};
return (
<option value={board.host}>
{getStatusIcon(board.connect_status)} {board.host} ({board.address}:{board.port}) - {getStatusText(board.connect_status)}
</option>
);
}}
</For>
</select>
</div>